def __init__(self): BaseAlgorithm.__init__(self) self.get_config() self.table_data = self.exec_sql(self.config['tableName'], self.config['X'], self.config['Y']) self.model = self.load_model_by_database(self.config['algorithm'], self.config['model'])
def __init__(self): BaseAlgorithm.__init__(self) self.get_config() if self.config["oneSample"]: self.table_data = None else: self.table_data = self.exec_sql(self.config['tableName'], self.config['X'], None) self.model = self.load_model_by_database(self.config['algorithm'], self.config['model'])
def __init__(self, method): BaseAlgorithm.__init__(self) self.one_type = "Classifier" self.one_type_name = "分类" self.second_type = "logisticRegression" self.second_type_name = "逻辑回归" # super(logisticAlgorithm, self).__init__() if method == "train": self.get_train_config_from_web() elif method == "evaluate": self.get_evaluate_config_from_web() else: self.get_predict_config_from_web() if method == 'predict' and self.config["oneSample"]: self.table_data = None else: self.table_data = self.exec_sql(self.config['tableName'], self.config['X'], self.config['Y'])
def __init__(self, method): BaseAlgorithm.__init__(self) self.one_type = "Cluster" self.one_type_name = "聚类" self.second_type = "hierarchicalCluster" self.second_type_name = "层次聚类" # super(logisticAlgorithm, self).__init__() if method == "train": self.get_train_config_from_web() elif method == "evaluate": self.get_evaluate_config_from_web() else: self.get_predict_config_from_web() if method == 'predict': if self.config["oneSample"]: self.table_data = None else: self.table_data = self.exec_sql(self.config['tableName'], self.config['X']) else: self.table_data = self.exec_sql(self.config['tableName'], self.config['X'])
def __init__(self, method): BaseAlgorithm.__init__(self) self.one_type = "Regression" self.one_type_name = "回归" self.second_type = "linerRegression" self.second_type_name = "线性回归" # super(logisticAlgorithm, self).__init__() if method == "train": self.get_train_config_from_web() elif method == "evaluate": self.get_evaluate_config_from_web() elif method == "predict": self.get_predict_config_from_web() elif method == "visualization": self.get_visualization_config_from_web() else: raise ValueError("input method:{} is not supported".format(method)) if method == 'predict' and self.config["oneSample"]: self.table_data = None else: self.table_data = self.exec_sql(self.config['tableName'], self.config['X'], self.config['Y'])
from dynaq_agent import DynaQAgent from q_agent import QAgent from random_agent import RandomAgent repetitions = 1 single_model = True path_to_experiment_configs = "experiments/" default_config = 'config.json' #algorithm = BaseAlgorithm(exploration=True, explorer=EpsilonGreedy(start=1.0, end=0.05, steps=10000), # use_database=False, action_selection = "moving average") algorithm = BaseAlgorithm(exploration=True, explorer=EpsilonGreedy(start=1.0, end=0.05, steps=10000), use_database=False, action_selection="majority vote") explorer = EpsilonGreedy(start=1., end=0.05, steps=10000) #algorithm = QAgent(exploration=True, explorer=explorer) #algorithm = DynaQAgent(exploration=True, explorer=explorer) # algorithm = Bayesian_Qlearning() #algorithm = Speedy_Qlearning(exploration=True, explorer=explorer) #algorithm = MeanAgent(exploration=True, explorer=explorer) #algorithm = RandomAgent() def generate_experiments(): for lamda in np.linspace(0, 0.9, num=3, endpoint=True):
if compare_random == True: random_scores = simulation.simulate_multiple_environment(envs, random_algorithm, T=horizon, num_trials=num_trials, discount=1) mean_random = np.mean(random_scores, axis=1) std_random = np.std(random_scores, axis=1) for i, (score, rand_score, score_std, rand_std) in enumerate( zip(mean_scores, mean_random, std_scores, std_random)): print(f'Environment: "{env_names[i]}"') print(f'-- Mean reward: {score} -- Std: {score_std}') print(f'-- Random reward: {rand_score} -- Std: {rand_std}') else: for i, (score, score_std) in enumerate(zip(mean_scores, std_scores)): print(f'Environment: "{env_names[i]}"') print(f'-- Mean reward: {score} -- Var: {score_std}') if save_results: with open('results.csv', 'w') as file: file.write('environment, runs, trials, mean_score, std_deviation\n') for env, mean, sigma in zip(env_names, mean_scores, std_scores): file.write('{}, {}, {}, {}, {}\n'.format(env, horizon, num_trials, mean, sigma)) return env_names, scores if __name__ == '__main__': algorithm = BaseAlgorithm(exploration=True, explorer=EpsilonGreedy(start=0.5, end=0.05, steps=1000), use_database=True, action_selection = "epsilon greedy") main(algorithm)