def __getitem__(self, index): img1 = Image.open(self.__left[index]) params = get_params(self.opt, img1.size) img1 = Image.open(self.__left[index]).convert('RGB') img2 = Image.open(self.__right[index]).convert('RGB') arg = random.random() > 0.5 if arg: img1, img2 = self.augument_image_pair(img1, img2) # img1.show() # img2.show() transform = get_transform(self.opt, params) # imgp = transform(img1) # imgq = transform(img2) # imgp.show() # imgq.show() img1 = transform(img1) img2 = transform(img2) input_dict = {'left_img': img1.cuda(), 'right_img': img2.cuda()} return input_dict
def __getitem__(self, index): stereo_img = Image.open(self.__stereo[index]).convert('RGB') s = stereo_img.size img1 = stereo_img.crop((0, 0, s[0] / 2, s[1])) params = get_params(self.opt, img1.size) # img2 = Image.open(self.__right[index]).convert('RGB') transform = get_transform(self.opt, params) img1 = transform(img1) # img2 = transform(img2) # print('size(img1),size(img1)') # print(np.array(img1).shape,np.array(img1).shape) # img1 = torch.from_numpy(np.asarray(img1)) # img2 = torch.from_numpy(np.asarray(img2)) # print('type(img1),type(img1)') # print(type(img1),type(img1)) # img1 = self.transforms(img1) # img2 = self.transforms(img2) input_dict = {'test_img': img1.cuda()} return input_dict
def __getitem__(self, index): stereo_img = Image.open(self.__stereo[index]).convert('RGB') s = stereo_img.size img1 = stereo_img.crop((0, 0, s[0] / 2, s[1])) img2 = stereo_img.crop((0, 0, s[0] / 2, s[1])) params = get_params(self.opt, img1.size) arg = random.random() > 0.5 if arg: img1, img2 = self.augument_image_pair(img1, img2) transform = get_transform(self.opt, params) img1 = transform(img1) img2 = transform(img2) input_dict = {'left_img': img1.cuda(), 'right_img': img2.cuda()} return input_dict