コード例 #1
0
 def test_sample_slice(self, item):
     sh = NoiseGenerator(seed=self.seed,
                         shape=self.shape,
                         start_time=self.start_time,
                         sample_rate=self.sample_rate,
                         samples_per_frame=10,
                         dtype=np.complex128)
     expected = sh.read()[item]
     sliced = sh[item]
     data = sliced.read()
     assert np.all(data == expected)
コード例 #2
0
 def setup(self):
     self.response = np.ones(3)
     self.start_time = Time('2010-11-12T13:14:15')
     self.sample_rate = 10. * u.kHz
     self.shape = (16000, 2)
     self.nh = NoiseGenerator(shape=self.shape,
                              start_time=self.start_time,
                              sample_rate=self.sample_rate,
                              samples_per_frame=200,
                              dtype=float,
                              seed=12345)
     self.data = self.nh.read()
コード例 #3
0
    def test_basics(self):
        with NoiseGenerator(seed=self.seed,
                            shape=self.shape,
                            start_time=self.start_time,
                            sample_rate=self.sample_rate,
                            samples_per_frame=10,
                            dtype=np.complex128) as nh:
            assert nh.size == np.prod(self.shape)
            assert abs(nh.stop_time - nh.start_time - 1. * u.s) < 1. * u.ns
            nh.seek(10)
            data1 = nh.read(2)
            assert data1.shape == (2, ) + nh.sample_shape
            assert data1.dtype == np.dtype('c16')
            nh.seek(0)
            data = nh.read()
            assert data.shape == nh.shape
            # Check repeatability.
            assert np.all(data1 == data[10:12])
            # On purpose read over a frame boundary; gh-52.
            nh.seek(9)
            data2 = nh.read(3)
            assert np.all(data2 == data[9:12])
            nh.seek(9000)
            data3 = nh.read()
            assert np.all(data3 == data[9000:])

        assert abs(data.mean()) < 10. / data.size**0.5
        assert abs(data.std() - np.sqrt(2.)) < 14. / data.size**0.5
コード例 #4
0
ファイル: test_pfb.py プロジェクト: mhvk/baseband-tasks
 def setup(self):
     self.nh = NoiseGenerator(shape=(2500 * 2048, ),
                              start_time=Time('2010-01-01'),
                              sample_rate=1. * u.kHz,
                              seed=12345,
                              samples_per_frame=128,
                              dtype='f8')
     self.nc = NoiseGenerator(shape=(2500 * 2048, ),
                              start_time=Time('2010-01-01'),
                              sample_rate=1. * u.kHz,
                              seed=12345,
                              samples_per_frame=128,
                              dtype='c16')
     self.n_tap = 4
     self.n_chan = 2048
     self.chime_pfb = sinc_hamming(4, 2048)  # CHIME PFB
     self.guppi_pfb = sinc_hamming(12, 64, sinc_scale=0.95)
コード例 #5
0
    def test_reproducible(self):
        # Should be independent of order data is read in.
        kwargs = dict(seed=self.seed,
                      shape=self.shape,
                      start_time=self.start_time,
                      sample_rate=self.sample_rate,
                      samples_per_frame=4,
                      dtype=np.complex128)
        with NoiseGenerator(**kwargs) as nh1:
            reference = nh1.read(40)

        with NoiseGenerator(**kwargs) as nh1:
            # Read in reverse order, in 10 samples at time time, i.e.,
            # on purpose not respecting frame boundaries.
            pieces = []
            for i in range(4):
                nh1.seek(30 - i * 10)
                pieces.append(nh1.read(10))
            data = np.concatenate(pieces[::-1])
        assert np.all(data == reference)
コード例 #6
0
ファイル: test_simulate.py プロジェクト: mhvk/baseband-tasks
 def setup(self):
     self.seed = 1234567
     self.start_time = Time('2010-11-12T13:14:15')
     self.sample_rate = 1. * u.kHz
     self.shape = (1000, )
     self.nh = NoiseGenerator(seed=self.seed,
                              shape=self.shape,
                              start_time=self.start_time,
                              sample_rate=self.sample_rate,
                              samples_per_frame=200,
                              dtype=np.complex64)
コード例 #7
0
 def test_use_as_source(self):
     """Test that noise routine with squarer gives expected levels."""
     nh = NoiseGenerator(seed=self.seed,
                         shape=self.shape,
                         start_time=self.start_time,
                         sample_rate=self.sample_rate,
                         samples_per_frame=10,
                         dtype=np.complex128)
     st = Square(nh)
     assert st.dtype == np.dtype('f8')
     data1 = st.read()
     assert st.tell() == st.shape[0]
     assert abs(st.time - st.start_time - 1. * u.s) < 1 * u.ns
     assert abs(data1.mean() - 2.) < 10. / st.size**0.5
     # Seeking and selective squaring.
     st.seek(-3, 2)
     assert st.tell() == st.shape[0] - 3
     data2 = st.read()
     assert data2.shape[0] == 3
     assert np.all(data2 == data1[-3:])
     nh.seek(-3, 2)
     noise2 = nh.read()
     assert np.all(data2 == noise2.real**2 + noise2.imag**2)
コード例 #8
0
 def test_no_repitition(self):
     with NoiseGenerator(seed=self.seed,
                         shape=self.shape,
                         start_time=self.start_time,
                         sample_rate=self.sample_rate,
                         samples_per_frame=1,
                         dtype=np.complex128) as nh:
         d0 = nh.read(1)
         nh.seek(3)
         d3 = nh.read(1)
         nh.seek(2)
         d2 = nh.read(1)
         d3_2 = nh.read(1)
         d4 = nh.read(1)
         assert not np.any(d0 == d3)
         assert not np.any(d3 == d2)
         assert not np.any(d3 == d4)
         # This used to fail, as the state was reset.  Regression test.
         assert not np.any(d2 == d4)
         assert np.all(d3 == d3_2)
コード例 #9
0
ファイル: test_pfb.py プロジェクト: mhvk/baseband-tasks
class TestBasics:
    def setup(self):
        self.nh = NoiseGenerator(shape=(2500 * 2048, ),
                                 start_time=Time('2010-01-01'),
                                 sample_rate=1. * u.kHz,
                                 seed=12345,
                                 samples_per_frame=128,
                                 dtype='f8')
        self.nc = NoiseGenerator(shape=(2500 * 2048, ),
                                 start_time=Time('2010-01-01'),
                                 sample_rate=1. * u.kHz,
                                 seed=12345,
                                 samples_per_frame=128,
                                 dtype='c16')
        self.n_tap = 4
        self.n_chan = 2048
        self.chime_pfb = sinc_hamming(4, 2048)  # CHIME PFB
        self.guppi_pfb = sinc_hamming(12, 64, sinc_scale=0.95)

    @pytest.mark.parametrize('offset', (0, 1000))
    def test_understanding(self, offset):
        """Stepping or frequency selection should give same answer.

        Often think of PFB as multiplying with an array that is, e.g.,
        4 times larger, then FFTing and taking every 4th frequency.

        But this is equivalent to, after multiplication, summing 4
        subsequent arrays and taking the FT of that.
        """
        self.nh.seek(offset * 2048)
        # First check for real data.
        d = self.nh.read(5 * 2048).reshape(-1, 2048)
        hd = self.chime_pfb * d[:4]
        ft1_hd = np.fft.rfft(hd.ravel())[::4]
        ft2_hd = np.fft.rfft(hd.sum(0))
        assert_allclose(ft1_hd, ft2_hd)

        # Check actual implementations.
        pfb = PolyphaseFilterBankSamples(self.nh, self.chime_pfb)
        pfb.seek(offset)
        ft_pfb = pfb.read(2)
        assert_allclose(ft_pfb[0], ft2_hd)
        assert_allclose(ft_pfb[1], np.fft.rfft(
            (self.chime_pfb * d[1:]).sum(0)))
        pfb2 = PolyphaseFilterBank(self.nh, self.chime_pfb)
        pfb2.seek(offset)
        ft_pfb2 = pfb2.read(2)
        assert_allclose(ft_pfb2, ft_pfb)

    @pytest.mark.parametrize('offset', (0, 1000))
    def test_understanding_complex(self, offset):
        # Check above holds for complex too.
        self.nc.seek(offset * 2048)
        c = self.nc.read(4 * 2048).reshape(-1, 2048)
        hc = self.chime_pfb * c
        ft1_hc = np.fft.fft(hc.ravel())[::4]
        ft2_hc = np.fft.fft(hc.sum(0))
        assert_allclose(ft1_hc, ft2_hc)

        # And check actual implementation.
        pfb = PolyphaseFilterBankSamples(self.nc, self.chime_pfb)
        pfb.seek(offset)
        ft_pfb = pfb.read(1)[0]
        assert_allclose(ft_pfb, ft2_hc)
        pfb2 = PolyphaseFilterBank(self.nc, self.chime_pfb)
        pfb2.seek(offset)
        ft_pfb2 = pfb2.read(1)[0]
        assert_allclose(ft_pfb2, ft2_hc)

    def test_inversion_understanding(self):
        # From simulations, thresh = 0.05 is about right for no rounding
        # with n_sample=128 (it is 0.03 for n_sample=1024).
        n_sample = 128
        self.nh.seek(3 * 2048)
        d_in = self.nh.read(n_sample * 2048).reshape(-1, 2048)
        pfb = PolyphaseFilterBank(self.nh,
                                  self.chime_pfb,
                                  samples_per_frame=n_sample)
        ft_pfb = pfb.read(n_sample + 3)
        # Dechannelize.
        d_pfb = np.fft.irfft(ft_pfb, axis=1)
        # Deconvolve.
        ft_fine = np.fft.rfft(d_pfb, axis=0)
        ft_resp = pfb._ft_response_conj
        ft_dec = ft_fine / ft_resp
        d_out = np.fft.irfft(ft_dec, axis=0, n=d_pfb.shape[0])
        d_out = d_out[3:]
        # We cannot hope to deconvolve near the edges and the PFB is such
        # that we loose the middle samples.
        assert_allclose(d_in[32:-32, :900], d_out[32:-32, :900], atol=0.001)
        assert_allclose(d_in[32:-32, 1150:], d_out[32:-32, 1150:], atol=0.001)
        # We can do better by Wiener filtering.  For no digitization noise,
        # threshold=(d_in-d_out)[32:-32].var()~0.01 seems roughly right.
        threshold = 0.05
        inverse = (ft_resp.conj() / (threshold**2 + np.abs(ft_resp)**2) *
                   (1 + threshold**2))
        ft_dec2 = ft_fine * inverse
        d_out2 = np.fft.irfft(ft_dec2, axis=0, n=d_pfb.shape[0])
        d_out2 = d_out2[3:]
        # Cannot help near the edges, but middle elements are now better.
        assert_allclose(d_in[32:-32], d_out2[32:-32], atol=0.3)

    def test_inversion_understanding_digitization(self):
        # From simulations, thresh = 0.1 is about right for rounding with
        # levels at S/3 -> S/N ~ 10.
        n_sample = 128
        self.nh.seek(3 * 2048)
        d_in = self.nh.read(n_sample * 2048).reshape(-1, 2048)

        # Check effect of digitization.
        ft_check = np.fft.rfft(d_in, axis=1)
        ft_check_dig = digitize(ft_check, ft_check.real.std() / 3.)
        d_check = np.fft.irfft(ft_check_dig, axis=1, n=2048)
        assert np.isclose((d_check - d_in).std(), 0.1, atol=0.005)

        pfb = PolyphaseFilterBank(self.nh,
                                  self.chime_pfb,
                                  samples_per_frame=n_sample)
        ft_pfb = pfb.read(n_sample + 3)
        ft_pfb_level = ft_pfb.real.std() / 3.
        ft_pfb_dig = (
            np.round(ft_pfb.view(float) / ft_pfb_level).view(complex) *
            ft_pfb_level)
        d_pfb = np.fft.irfft(ft_pfb_dig, axis=1)
        # Deconvolve.
        ft_fine = np.fft.rfft(d_pfb, axis=0)
        ft_resp = pfb._ft_response_conj
        threshold = 0.1
        inverse = (ft_resp.conj() / (threshold**2 + np.abs(ft_resp)**2) *
                   (1 + threshold**2))
        ft_dec = ft_fine * inverse
        d_out = np.fft.irfft(ft_dec, axis=0, n=d_pfb.shape[0])
        d_out = d_out[3:]
        assert np.isclose((d_out - d_in)[32:-32].std(), 0.125, atol=0.01)
        # Still get noisier data near middle, of course, but recover
        # to within 1 sigma of input noise signal.
        assert_allclose(d_in[32:-32], d_out[32:-32], atol=1)

    def test_inversion_chime_pfb(self):
        # Now test the same, but with the actual inversion class.
        # Here, we do not give samples_per_frame for the PFB, since we do
        # not need its FT (and it is exact for any value).
        n_sample = 128
        pad = 48
        self.nh.seek(pad * 2048 + 3 * 2048 // 2)
        d_in = self.nh.read(n_sample * 2048).reshape(-1, 2048)
        pfb = PolyphaseFilterBank(self.nh, self.chime_pfb)
        ipfb = InversePolyphaseFilterBank(pfb,
                                          self.chime_pfb,
                                          sn=100,
                                          pad_start=pad,
                                          pad_end=pad,
                                          samples_per_frame=n_sample * 2048,
                                          dtype=self.nh.dtype)
        d_out = ipfb.read(n_sample * 2048).reshape(-1, 2048)
        assert_allclose(d_in[:, 50:-50], d_out[:, 50:-50], atol=0.01)

    def test_inversion_chime_pfb_digitized(self):
        # Now test the same, but with the actual inversion class.
        # Here, we do not give samples_per_frame for the PFB, since we do
        # not need its FT (and it is exact for any value).
        n_sample = 128
        pad = 32
        self.nh.seek(pad * 2048 + 3 * 2048 // 2)
        d_in = self.nh.read(n_sample * 2048).reshape(-1, 2048)
        pfb = PolyphaseFilterBank(self.nh, self.chime_pfb)
        dig_level = pfb.read(n_sample).real.std() / 3.
        pfb_dig = Task(pfb,
                       task=lambda ft: digitize(ft, dig_level),
                       samples_per_frame=n_sample)
        ipfb = InversePolyphaseFilterBank(pfb_dig,
                                          self.chime_pfb,
                                          sn=10,
                                          pad_start=pad,
                                          pad_end=pad,
                                          samples_per_frame=n_sample * 2048,
                                          dtype=self.nh.dtype)
        d_out = ipfb.read(n_sample * 2048).reshape(-1, 2048)
        assert np.isclose((d_out - d_in).std(), 0.125, atol=0.01)
        assert_allclose(d_in, d_out, atol=1.1)

    def test_inversion_guppi_pfb(self):
        n_sample = 512
        pad = 128
        self.nh.seek(pad * 64 + 11 * 64 // 2)
        d_in = self.nh.read(n_sample * 64).reshape(-1, 64)
        pfb = PolyphaseFilterBank(self.nh, self.guppi_pfb)
        ipfb = InversePolyphaseFilterBank(pfb,
                                          self.guppi_pfb,
                                          sn=30,
                                          pad_start=pad,
                                          pad_end=pad,
                                          samples_per_frame=n_sample * 64,
                                          dtype=self.nh.dtype)
        d_out = ipfb.read(n_sample * 64).reshape(-1, 64)
        # Note that the PFB cuts off the channel edges so badly that
        # it is not possible to reproduce the original well.
        assert_allclose(d_in, d_out, atol=0.15)
        # It is almost exclusively the edge samples that are bad.
        ipfb2 = InversePolyphaseFilterBank(pfb,
                                           self.guppi_pfb,
                                           sn=1e9,
                                           pad_start=pad,
                                           pad_end=pad,
                                           samples_per_frame=n_sample * 64,
                                           dtype=self.nh.dtype)
        d_out2 = ipfb2.read(n_sample * 64).reshape(-1, 64)
        assert_allclose(d_in[:, 2:-2], d_out2[:, 2:-2], atol=0.005)

    def test_inversion_guppi_pfb_digitized(self):
        n_sample = 512
        pad = 128
        self.nh.seek(pad * 64 + 11 * 64 // 2)
        d_in = self.nh.read(n_sample * 64).reshape(-1, 64)
        pfb = PolyphaseFilterBank(self.nh, self.guppi_pfb)
        dig_level = pfb.read(n_sample).real.std() / 30.
        pfb_dig = Task(pfb,
                       task=lambda ft: digitize(ft, dig_level),
                       samples_per_frame=n_sample)
        ipfb = InversePolyphaseFilterBank(pfb_dig,
                                          self.guppi_pfb,
                                          sn=30,
                                          pad_start=pad,
                                          pad_end=pad,
                                          samples_per_frame=n_sample * 64,
                                          dtype=self.nh.dtype)
        d_out = ipfb.read(n_sample * 64).reshape(-1, 64)
        # Not much effect of digitization since it introduces little noise.
        assert_allclose(d_in, d_out, atol=0.15)
コード例 #10
0
class TestConvolveNoise:
    """Test convolution with simple smoothing filter."""
    def setup(self):
        self.response = np.ones(3)
        self.start_time = Time('2010-11-12T13:14:15')
        self.sample_rate = 10. * u.kHz
        self.shape = (16000, 2)
        self.nh = NoiseGenerator(shape=self.shape,
                                 start_time=self.start_time,
                                 sample_rate=self.sample_rate,
                                 samples_per_frame=200,
                                 dtype=float,
                                 seed=12345)
        self.data = self.nh.read()

    @pytest.mark.parametrize('convolve_task', (ConvolveSamples, Convolve))
    @pytest.mark.parametrize('offset', (1, 2))
    def test_offset(self, convolve_task, offset):
        ct = convolve_task(self.nh,
                           self.response,
                           offset=offset,
                           samples_per_frame=1024)
        assert abs(ct.start_time - self.start_time -
                   (2 - offset) / self.sample_rate) < 1. * u.ns
        expected = self.data[:-2] + self.data[1:-1] + self.data[2:]
        data1b = ct.read(10)
        assert np.allclose(data1b, expected[:10])
        ct.seek(-10, 2)
        data1e = ct.read(10)
        assert np.allclose(data1e, expected[-10:])
        ct2 = convolve_task(self.nh,
                            np.ones((3, 2)),
                            offset=offset,
                            samples_per_frame=1024)
        ct2.seek(5)
        data2 = ct2.read(5)
        assert np.allclose(data2, data1b[5:])

    @pytest.mark.parametrize('convolve_task', (ConvolveSamples, Convolve))
    def test_different_response(self, convolve_task):
        response = np.array([[1., 1., 1.], [1., 1., 0.]]).T
        ct = convolve_task(self.nh, response, samples_per_frame=512)
        assert abs(ct.start_time - self.start_time -
                   2 / self.sample_rate) < 1. * u.ns
        expected = (self.data[:-2] * np.array([1, 0]) + self.data[1:-1] +
                    self.data[2:])
        data1 = ct.read()
        assert np.allclose(data1, expected)

    def test_repr(self):
        ct = ConvolveSamples(self.nh, self.response)
        r = repr(ct)
        assert r.startswith('ConvolveSamples(ih')
        assert 'response=' in r
        assert 'offset=' not in r
        assert 'samples_per_frame' in r  # since different from input.

    @pytest.mark.parametrize('convolve_task', (ConvolveSamples, Convolve))
    def test_wrong_response(self, convolve_task):
        with pytest.raises(ValueError):
            convolve_task(self.nh, np.ones((3, 3)))