def test_inversion_understanding_digitization(self): # From simulations, thresh = 0.1 is about right for rounding with # levels at S/3 -> S/N ~ 10. n_sample = 128 self.nh.seek(3 * 2048) d_in = self.nh.read(n_sample * 2048).reshape(-1, 2048) # Check effect of digitization. ft_check = np.fft.rfft(d_in, axis=1) ft_check_dig = digitize(ft_check, ft_check.real.std() / 3.) d_check = np.fft.irfft(ft_check_dig, axis=1, n=2048) assert np.isclose((d_check - d_in).std(), 0.1, atol=0.005) pfb = PolyphaseFilterBank(self.nh, self.chime_pfb, samples_per_frame=n_sample) ft_pfb = pfb.read(n_sample + 3) ft_pfb_level = ft_pfb.real.std() / 3. ft_pfb_dig = ( np.round(ft_pfb.view(float) / ft_pfb_level).view(complex) * ft_pfb_level) d_pfb = np.fft.irfft(ft_pfb_dig, axis=1) # Deconvolve. ft_fine = np.fft.rfft(d_pfb, axis=0) ft_resp = pfb._ft_response_conj threshold = 0.1 inverse = (ft_resp.conj() / (threshold**2 + np.abs(ft_resp)**2) * (1 + threshold**2)) ft_dec = ft_fine * inverse d_out = np.fft.irfft(ft_dec, axis=0, n=d_pfb.shape[0]) d_out = d_out[3:] assert np.isclose((d_out - d_in)[32:-32].std(), 0.125, atol=0.01) # Still get noisier data near middle, of course, but recover # to within 1 sigma of input noise signal. assert_allclose(d_in[32:-32], d_out[32:-32], atol=1)
def test_understanding(self, offset): """Stepping or frequency selection should give same answer. Often think of PFB as multiplying with an array that is, e.g., 4 times larger, then FFTing and taking every 4th frequency. But this is equivalent to, after multiplication, summing 4 subsequent arrays and taking the FT of that. """ self.nh.seek(offset * 2048) # First check for real data. d = self.nh.read(5 * 2048).reshape(-1, 2048) hd = self.chime_pfb * d[:4] ft1_hd = np.fft.rfft(hd.ravel())[::4] ft2_hd = np.fft.rfft(hd.sum(0)) assert_allclose(ft1_hd, ft2_hd) # Check actual implementations. pfb = PolyphaseFilterBankSamples(self.nh, self.chime_pfb) pfb.seek(offset) ft_pfb = pfb.read(2) assert_allclose(ft_pfb[0], ft2_hd) assert_allclose(ft_pfb[1], np.fft.rfft( (self.chime_pfb * d[1:]).sum(0))) pfb2 = PolyphaseFilterBank(self.nh, self.chime_pfb) pfb2.seek(offset) ft_pfb2 = pfb2.read(2) assert_allclose(ft_pfb2, ft_pfb)
def test_inversion_understanding(self): # From simulations, thresh = 0.05 is about right for no rounding # with n_sample=128 (it is 0.03 for n_sample=1024). n_sample = 128 self.nh.seek(3 * 2048) d_in = self.nh.read(n_sample * 2048).reshape(-1, 2048) pfb = PolyphaseFilterBank(self.nh, self.chime_pfb, samples_per_frame=n_sample) ft_pfb = pfb.read(n_sample + 3) # Dechannelize. d_pfb = np.fft.irfft(ft_pfb, axis=1) # Deconvolve. ft_fine = np.fft.rfft(d_pfb, axis=0) ft_resp = pfb._ft_response_conj ft_dec = ft_fine / ft_resp d_out = np.fft.irfft(ft_dec, axis=0, n=d_pfb.shape[0]) d_out = d_out[3:] # We cannot hope to deconvolve near the edges and the PFB is such # that we loose the middle samples. assert_allclose(d_in[32:-32, :900], d_out[32:-32, :900], atol=0.001) assert_allclose(d_in[32:-32, 1150:], d_out[32:-32, 1150:], atol=0.001) # We can do better by Wiener filtering. For no digitization noise, # threshold=(d_in-d_out)[32:-32].var()~0.01 seems roughly right. threshold = 0.05 inverse = (ft_resp.conj() / (threshold**2 + np.abs(ft_resp)**2) * (1 + threshold**2)) ft_dec2 = ft_fine * inverse d_out2 = np.fft.irfft(ft_dec2, axis=0, n=d_pfb.shape[0]) d_out2 = d_out2[3:] # Cannot help near the edges, but middle elements are now better. assert_allclose(d_in[32:-32], d_out2[32:-32], atol=0.3)
def test_inversion_guppi_pfb(self): n_sample = 512 pad = 128 self.nh.seek(pad * 64 + 11 * 64 // 2) d_in = self.nh.read(n_sample * 64).reshape(-1, 64) pfb = PolyphaseFilterBank(self.nh, self.guppi_pfb) ipfb = InversePolyphaseFilterBank(pfb, self.guppi_pfb, sn=30, pad_start=pad, pad_end=pad, samples_per_frame=n_sample * 64, dtype=self.nh.dtype) d_out = ipfb.read(n_sample * 64).reshape(-1, 64) # Note that the PFB cuts off the channel edges so badly that # it is not possible to reproduce the original well. assert_allclose(d_in, d_out, atol=0.15) # It is almost exclusively the edge samples that are bad. ipfb2 = InversePolyphaseFilterBank(pfb, self.guppi_pfb, sn=1e9, pad_start=pad, pad_end=pad, samples_per_frame=n_sample * 64, dtype=self.nh.dtype) d_out2 = ipfb2.read(n_sample * 64).reshape(-1, 64) assert_allclose(d_in[:, 2:-2], d_out2[:, 2:-2], atol=0.005)
def test_understanding_complex(self, offset): # Check above holds for complex too. self.nc.seek(offset * 2048) c = self.nc.read(4 * 2048).reshape(-1, 2048) hc = self.chime_pfb * c ft1_hc = np.fft.fft(hc.ravel())[::4] ft2_hc = np.fft.fft(hc.sum(0)) assert_allclose(ft1_hc, ft2_hc) # And check actual implementation. pfb = PolyphaseFilterBankSamples(self.nc, self.chime_pfb) pfb.seek(offset) ft_pfb = pfb.read(1)[0] assert_allclose(ft_pfb, ft2_hc) pfb2 = PolyphaseFilterBank(self.nc, self.chime_pfb) pfb2.seek(offset) ft_pfb2 = pfb2.read(1)[0] assert_allclose(ft_pfb2, ft2_hc)
def test_inversion_guppi_pfb_digitized(self): n_sample = 512 pad = 128 self.nh.seek(pad * 64 + 11 * 64 // 2) d_in = self.nh.read(n_sample * 64).reshape(-1, 64) pfb = PolyphaseFilterBank(self.nh, self.guppi_pfb) dig_level = pfb.read(n_sample).real.std() / 30. pfb_dig = Task(pfb, task=lambda ft: digitize(ft, dig_level), samples_per_frame=n_sample) ipfb = InversePolyphaseFilterBank(pfb_dig, self.guppi_pfb, sn=30, pad_start=pad, pad_end=pad, samples_per_frame=n_sample * 64, dtype=self.nh.dtype) d_out = ipfb.read(n_sample * 64).reshape(-1, 64) # Not much effect of digitization since it introduces little noise. assert_allclose(d_in, d_out, atol=0.15)
def test_inversion_chime_pfb_digitized(self): # Now test the same, but with the actual inversion class. # Here, we do not give samples_per_frame for the PFB, since we do # not need its FT (and it is exact for any value). n_sample = 128 pad = 32 self.nh.seek(pad * 2048 + 3 * 2048 // 2) d_in = self.nh.read(n_sample * 2048).reshape(-1, 2048) pfb = PolyphaseFilterBank(self.nh, self.chime_pfb) dig_level = pfb.read(n_sample).real.std() / 3. pfb_dig = Task(pfb, task=lambda ft: digitize(ft, dig_level), samples_per_frame=n_sample) ipfb = InversePolyphaseFilterBank(pfb_dig, self.chime_pfb, sn=10, pad_start=pad, pad_end=pad, samples_per_frame=n_sample * 2048, dtype=self.nh.dtype) d_out = ipfb.read(n_sample * 2048).reshape(-1, 2048) assert np.isclose((d_out - d_in).std(), 0.125, atol=0.01) assert_allclose(d_in, d_out, atol=1.1)
def test_inversion_chime_pfb(self): # Now test the same, but with the actual inversion class. # Here, we do not give samples_per_frame for the PFB, since we do # not need its FT (and it is exact for any value). n_sample = 128 pad = 48 self.nh.seek(pad * 2048 + 3 * 2048 // 2) d_in = self.nh.read(n_sample * 2048).reshape(-1, 2048) pfb = PolyphaseFilterBank(self.nh, self.chime_pfb) ipfb = InversePolyphaseFilterBank(pfb, self.chime_pfb, sn=100, pad_start=pad, pad_end=pad, samples_per_frame=n_sample * 2048, dtype=self.nh.dtype) d_out = ipfb.read(n_sample * 2048).reshape(-1, 2048) assert_allclose(d_in[:, 50:-50], d_out[:, 50:-50], atol=0.01)