コード例 #1
0
    def __init__(self,
                 observation_space,
                 action_space,
                 observations,
                 latent,
                 estimate_q=False,
                 vf_latent=None,
                 sess=None,
                 **tensors):
        """
        Parameters:
        ----------
        env             RL environment

        observations    tensorflow placeholder in which the observations will be fed

        latent          latent state from which policy distribution parameters should be inferred

        vf_latent       latent state from which value function should be inferred (if None, then latent is used)

        sess            tensorflow session to run calculations in (if None, default session is used)

        **tensors       tensorflow tensors for additional attributes such as state or mask

        """

        self.X = observations
        self.state = tf.constant([])
        self.initial_state = None
        self.__dict__.update(tensors)

        vf_latent = vf_latent if vf_latent is not None else latent

        vf_latent = tf.layers.flatten(vf_latent)
        latent = tf.layers.flatten(latent)

        # Based on the action space, will select what probability distribution type
        self.pdtype = make_pdtype(action_space)

        self.pd, self.pi = self.pdtype.pdfromlatent(latent, init_scale=0.01)

        # Take an action
        self.action = self.pd.sample()

        # Calculate the neg log of our probability
        self.neglogp = self.pd.neglogp(self.action)
        self.sess = sess or tf.get_default_session()

        if estimate_q:
            assert isinstance(action_space, gym.spaces.Discrete)
            self.q = fc(vf_latent, 'q', action_space.n)
            self.vf = self.q
        else:
            self.vf = fc(vf_latent, 'vf', 1)
            self.vf = self.vf[:, 0]
コード例 #2
0
def nature_cnn(unscaled_images, **conv_kwargs):
    """
    CNN from Nature paper.
    """
    scaled_images = tf.cast(unscaled_images, tf.float32) / 255.
    activ = tf.nn.relu
    h = activ(
        conv(scaled_images,
             'c1',
             nf=32,
             rf=8,
             stride=4,
             init_scale=np.sqrt(2),
             **conv_kwargs))
    h2 = activ(
        conv(h,
             'c2',
             nf=64,
             rf=4,
             stride=2,
             init_scale=np.sqrt(2),
             **conv_kwargs))
    h3 = activ(
        conv(h2,
             'c3',
             nf=64,
             rf=3,
             stride=1,
             init_scale=np.sqrt(2),
             **conv_kwargs))
    h3 = conv_to_fc(h3)
    return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2)))
コード例 #3
0
def _matching_fc(tensor, name, size, init_scale, init_bias):
    if tensor.shape[-1] == size:
        return tensor
    else:
        return fc(tensor,
                  name,
                  size,
                  init_scale=init_scale,
                  init_bias=init_bias)
コード例 #4
0
    def network_fn(X):
        h = tf.layers.flatten(X)
        for i in range(num_layers):
            h = fc(h,
                   'mlp_fc{}'.format(i),
                   nh=num_hidden,
                   init_scale=np.sqrt(2))
            if layer_norm:
                h = tf.contrib.layers.layer_norm(h, center=True, scale=True)
            h = activation(h)

        return h
コード例 #5
0
    def network_fn(X):
        h = tf.cast(X, tf.float32) / 255.

        activ = tf.nn.relu
        h = activ(
            conv(h,
                 'c1',
                 nf=8,
                 rf=8,
                 stride=4,
                 init_scale=np.sqrt(2),
                 **conv_kwargs))
        h = activ(
            conv(h,
                 'c2',
                 nf=16,
                 rf=4,
                 stride=2,
                 init_scale=np.sqrt(2),
                 **conv_kwargs))
        h = conv_to_fc(h)
        h = activ(fc(h, 'fc1', nh=128, init_scale=np.sqrt(2)))
        return h