def __init__(self, model, **kwargs): super(TaggerTrainerTf, self).__init__() self.loss = model.create_loss() self.model = model span_type = kwargs.get('span_type', 'iob') self.evaluator = TaggerEvaluatorTf(model, span_type) self.global_step, self.train_op = optimizer(self.loss, **kwargs)
def __init__(self, model, **kwargs): super(Seq2SeqTrainerTf, self).__init__() self.sess = model.sess self.loss = model.create_loss() self.test_loss = model.create_test_loss() self.model = model self.global_step, self.train_op = optimizer(self.loss, **kwargs)
def __init__(self, model, **kwargs): super(ClassifyTrainerTf, self).__init__() self.sess = model.sess self.loss = model.create_loss() self.test_loss = model.create_test_loss() self.model = model self.global_step, self.train_op = optimizer( self.loss, colocate_gradients_with_ops=True, **kwargs)
def __init__(self, model, **kwargs): super(ClassifyTrainerTf, self).__init__() self.sess = model.sess self.loss = model.create_loss() self.test_loss = model.create_test_loss() self.model = model self.global_step, train_op = optimizer( self.loss, colocate_gradients_with_ops=True, **kwargs) decay = kwargs.get('ema_decay', None) if decay is not None: self.ema = True ema_op, self.ema_load, self.ema_restore = _add_ema( model, float(decay)) with tf.control_dependencies([ema_op]): self.train_op = tf.identity(train_op) else: self.ema = False self.train_op = train_op
def __init__(self, model, **kwargs): super(TaggerTrainerTf, self).__init__() self.loss = model.create_loss() self.model = model self.evaluator = TaggerEvaluatorTf(model) self.global_step, self.train_op = optimizer(self.loss, **kwargs)