def load_action(path, scope, game, training_flag): env = game.env env.set_training_flag(training_flag) param_path = os.getcwd() + '/network_parameters/param.json' param = jp.load_json_data(param_path) act = learn_multi_nets(env, network=models.mlp(num_layers=param['num_layers'], num_hidden=param['num_hidden']), total_timesteps=0, load_path=path, scope=scope + '/') return act
def rand_def_str_generator(env, game): # Generate random nn for attacker. num_layers = game.num_layers num_hidden = game.num_hidden env.set_training_flag(0) act_def = learn_multi_nets(env, network=models.mlp(num_hidden=num_hidden, num_layers=num_layers - 3), total_timesteps=0) print("Saving defender's model to pickle. Epoch in name is equal to 1.") act_def.save(DIR_def + "def_str_epoch" + str(1) + ".pkl") # game.def_str.append("def_str_epoch" + str(1) + ".pkl") game.add_def_str("def_str_epoch" + str(1) + ".pkl")