from baselines.trpo_mpi import defaults from baselines.common import set_global_seeds, tf_util as U from baselines.common.input import observation_placeholder from baselines.common.models import mlp from baselines.common.policies import build_policy from baselines.common.vec_env.dummy_vec_env import DummyVecEnv U.get_session( config=tf.ConfigProto( allow_soft_placement = True, inter_op_parallelism_threads = 1, intra_op_parallelism_threads = 1) ) U.initialize() # Get dictionary from baselines/trpo_mpi/defaults defaults = defaults.mara_mlp() # Create needed folders try: logdir = defaults['trained_path'].split('checkpoints')[0] + 'results' + defaults['trained_path'].split('checkpoints')[1] except: logdir = '/tmp/ros2learn/' + defaults['env_name'] + '/trpo_mpi_results/' finally: logger.configure( os.path.abspath(logdir) ) csvdir = logdir + "csv/" csv_files = [csvdir + "det_obs.csv", csvdir + "det_acs.csv", csvdir + "det_rew.csv"] if not os.path.exists(csvdir): os.makedirs(csvdir) else: for f in csv_files:
from baselines.common.models import mlp from baselines.common.vec_env.dummy_vec_env import DummyVecEnv def make_env(): env = gym.make(alg_kwargs['env_name']) env.set_episode_size(alg_kwargs['timesteps_per_batch']) env = bench.Monitor(env, logger.get_dir() and os.path.join(logger.get_dir()), allow_early_resets=True) return env # Get dictionary from baselines/trpo_mpi/defaults alg_kwargs = defaults.mara_mlp() # Create needed folders timedate = datetime.now().strftime('%Y-%m-%d_%Hh%Mmin') logdir = '/tmp/ros2learn/' + alg_kwargs['env_name'] + '/trpo_mpi/' + timedate # Generate tensorboard file format_strs = os.getenv('MARA_LOG_FORMAT', 'stdout,log,csv,tensorboard').split(',') logger.configure(os.path.abspath(logdir), format_strs) with open(logger.get_dir() + "/parameters.txt", 'w') as out: out.write('num_layers = ' + str(alg_kwargs['num_layers']) + '\n' + 'num_hidden = ' + str(alg_kwargs['num_hidden']) + '\n' + 'layer_norm = ' + str(alg_kwargs['layer_norm']) + '\n' + 'timesteps_per_batch = ' +