コード例 #1
0
ファイル: ddpg_learner.py プロジェクト: yfletberliac/MERL
 def setup_critic_optimizer(self):
     logger.info('setting up critic optimizer')
     normalized_critic_target_tf = tf.clip_by_value(
         normalize(self.critic_target, self.ret_rms), self.return_range[0],
         self.return_range[1])
     self.critic_loss = tf.reduce_mean(
         tf.square(self.normalized_critic_tf - normalized_critic_target_tf))
     if self.critic_l2_reg > 0.:
         critic_reg_vars = [
             var for var in self.critic.trainable_vars
             if var.name.endswith('/w:0') and 'output' not in var.name
         ]
         for var in critic_reg_vars:
             logger.info('  regularizing: {}'.format(var.name))
         logger.info('  applying l2 regularization with {}'.format(
             self.critic_l2_reg))
         critic_reg = tc.layers.apply_regularization(
             tc.layers.l2_regularizer(self.critic_l2_reg),
             weights_list=critic_reg_vars)
         self.critic_loss += critic_reg
     critic_shapes = [
         var.get_shape().as_list() for var in self.critic.trainable_vars
     ]
     critic_nb_params = sum(
         [reduce(lambda x, y: x * y, shape) for shape in critic_shapes])
     logger.info('  critic shapes: {}'.format(critic_shapes))
     logger.info('  critic params: {}'.format(critic_nb_params))
     self.critic_grads = U.flatgrad(self.critic_loss,
                                    self.critic.trainable_vars,
                                    clip_norm=self.clip_norm)
     self.critic_optimizer = MpiAdam(var_list=self.critic.trainable_vars,
                                     beta1=0.9,
                                     beta2=0.999,
                                     epsilon=1e-08)
コード例 #2
0
    def setup_critic_optimizer(self):
        logger.info('setting up critic optimizer')
        normalized_critic_target_tf = tf.clip_by_value(
            normalize(self.critic_target, self.ret_rms), self.return_range[0],
            self.return_range[1])

        # Variance explained (Vexp)
        _, var_r = tf.nn.moments(normalized_critic_target_tf, axes=0)
        _, var_rv = tf.nn.moments(normalized_critic_target_tf -
                                  self.normalized_critic_tf,
                                  axes=0)
        ve = 1 - var_rv / var_r

        # Final Vexp loss
        self.ve_loss = tf.reduce_mean(tf.square(ve -
                                                self.normalized_critic_ve))

        # NSA loss
        self.fs_loss = tf.losses.cosine_distance(
            tf.nn.l2_normalize(self.obs0[1:], 1),
            tf.nn.l2_normalize(self.normalized_critic_fs[:-1], 1),
            axis=1,
            reduction=Reduction.MEAN)

        self.vf_loss = tf.reduce_mean(
            tf.square(self.normalized_critic_tf - normalized_critic_target_tf))

        self.critic_loss = self.vf_loss + 0.5 * self.ve_loss + 0.01 * self.fs_loss

        if self.critic_l2_reg > 0.:
            critic_reg_vars = [
                var for var in self.critic.trainable_vars
                if var.name.endswith('/w:0') and 'output' not in var.name
            ]
            for var in critic_reg_vars:
                logger.info('  regularizing: {}'.format(var.name))
            logger.info('  applying l2 regularization with {}'.format(
                self.critic_l2_reg))
            critic_reg = tc.layers.apply_regularization(
                tc.layers.l2_regularizer(self.critic_l2_reg),
                weights_list=critic_reg_vars)
            self.critic_loss += critic_reg
        critic_shapes = [
            var.get_shape().as_list() for var in self.critic.trainable_vars
        ]
        critic_nb_params = sum(
            [reduce(lambda x, y: x * y, shape) for shape in critic_shapes])
        logger.info('  critic shapes: {}'.format(critic_shapes))
        logger.info('  critic params: {}'.format(critic_nb_params))
        self.critic_grads = U.flatgrad(self.critic_loss,
                                       self.critic.trainable_vars,
                                       clip_norm=self.clip_norm)
        self.critic_optimizer = MpiAdam(var_list=self.critic.trainable_vars,
                                        beta1=0.9,
                                        beta2=0.999,
                                        epsilon=1e-08)
コード例 #3
0
 def setup_actor_optimizer(self):
     logger.info('setting up actor optimizer')
     self.actor_loss = -tf.reduce_mean(self.critic_with_actor_tf)
     actor_shapes = [
         var.get_shape().as_list() for var in self.actor.trainable_vars
     ]
     actor_nb_params = sum(
         [reduce(lambda x, y: x * y, shape) for shape in actor_shapes])
     logger.info('  actor shapes: {}'.format(actor_shapes))
     logger.info('  actor params: {}'.format(actor_nb_params))
     self.actor_grads = U.flatgrad(self.actor_loss,
                                   self.actor.trainable_vars,
                                   clip_norm=self.clip_norm)
     self.actor_optimizer = MpiAdam(var_list=self.actor.trainable_vars,
                                    beta1=0.9,
                                    beta2=0.999,
                                    epsilon=1e-08)
コード例 #4
0
def test_MpiAdam():
    np.random.seed(0)
    tf.set_random_seed(0)

    a = tf.Variable(np.random.randn(3).astype('float32'))
    b = tf.Variable(np.random.randn(2, 5).astype('float32'))
    loss = tf.reduce_sum(tf.square(a)) + tf.reduce_sum(tf.sin(b))

    stepsize = 1e-2
    update_op = tf.train.AdamOptimizer(stepsize).minimize(loss)
    do_update = U.function([], loss, updates=[update_op])

    tf.get_default_session().run(tf.global_variables_initializer())
    losslist_ref = []
    for i in range(10):
        l = do_update()
        print(i, l)
        losslist_ref.append(l)

    tf.set_random_seed(0)
    tf.get_default_session().run(tf.global_variables_initializer())

    var_list = [a, b]
    lossandgrad = U.function([], [loss, U.flatgrad(loss, var_list)])
    adam = MpiAdam(var_list)

    losslist_test = []
    for i in range(10):
        l, g = lossandgrad()
        adam.update(g, stepsize)
        print(i, l)
        losslist_test.append(l)

    np.testing.assert_allclose(np.array(losslist_ref),
                               np.array(losslist_test),
                               atol=1e-4)