コード例 #1
0
ファイル: __init__.py プロジェクト: IvanLJF/adore-doris
def data_from_image(im, classes, mask, limits=[0., 1.]):
    """ This function extracts the data from a image, based on the classes and a mask. 
      Once the data is masked, a look-up-table is used to set values to the classes. 
  """
    import time
    N = int(basic.nonan(classes).max() + 1)
    # zero is a class...
    classes[mask] = np.nan
    classLimits = np.linspace(np.min(limits), np.max(limits), N)

    cmax = 2**np.round(np.log2(im.max()))
    imSingle = im[:, :, 0] * (cmax**0) + im[:, :, 1] * (
        cmax**1) + im[:, :, 2] * (cmax**2.)
    data = np.zeros(imSingle.shape)
    t0 = 0
    for k in xrange(N - 1):
        #for each class do a linear interpolation
        if np.any(classes == k):
            data[classes == k] = basic.rescale(imSingle[classes == k],
                                               classLimits[k:k + 2],
                                               quiet=True)
        if basic.progresstime(t0):
            basic.progress(k, N)
            t0 = time.time()
    data[mask] = np.nan
    return data
コード例 #2
0
def point_solve_dem(dem, i12s, cohs, h2phs, dem_std, multilook, samples=1000, stepsize=None, figures=False, unwrapped=False):
    """point_solve_dem(dem, i12s, cohs, dem_std, multilook, samples=1000, stepsize=None):
        Solves a single point.
        dem=scalar: dem height for the point
        i12s=vector: observed subtrrefpha, filtphase,unwrap values for point
        cohs= vector: observed coherence values for point
        dem_std= scalar: estimated dem standard dev. for point
        multilook= scalar: interferogram multilooking
        samples=1000: scalar to be used to constract search space. 
        stepsize=scalar: height sensitivity to use instead of samples to constract search space. 
        
        search space = linspace (dem-3*dem_std , dem+3*dem_std , samples) 
        OR
        search space = r_[dem-3*dem_std : dem+3*dem_std : stepSize]
    """
    import numpy as np
    import os
    os.sys.path.append('/d0/bosmanoglu/projectLocker/pythonUnwrap/trunk')
    import insar
    import scipy
    from scipy import special
    if stepsize is None:
        ss = linspace(dem-3*dem_std , dem+3*dem_std , samples)  #stepsize
    else:
        ss = np.r_[dem-3*dem_std : dem+3*dem_std : stepsize]    
    #convert ss to phase
    sp=np.dot(np.atleast_2d(ss).T, np.atleast_2d(h2phs))        #step phase
    # offset the domain with phase value
    if any(iscomplex(i12s)):
        sp=sp-np.tile(np.angle(i12s), (sp.shape[0],1))
    else:
        sp=sp-np.tile(i12s, (sp.shape[0],1));
    #pdf of dem
    pdem=insar.dem.maximum_likelihood.pdf_dem(dem, ss, dem_std);
    #pdf based on InSAR data
    if figures:
        pint=insar.coh2pdfML( cohs, multilook, domain=sp.T )
        for k in xrange(len(pint)):
            plot(ss, pint[k,:])
        pint=basic.nonan(pint, True).prod(0)
        plot(ss, pdem, 'k--')
        plot(ss, pdem*pint/nanmax(pdem*pint), 'k-.')
        plot(ss, pint/nanmax(pint), 'k:')
        print('i12s/cohs/h2phs')
        print(i12s)
        print(cohs)
        print(h2phs)
    else:
        pint=insar.coh2pdfML( cohs, multilook, domain=sp.T ).prod(0)        
    
    #joint pdf
    jp=pdem*pint
    return ss[jp.argmax()]
コード例 #3
0
ファイル: __init__.py プロジェクト: IvanLJF/adore-doris
    def onclick(event):
        P.figure(fh.number)
        P.clf()
        #ax = P.gca()
        #inv = ax.transData.inverted()
        #A=inv.transform((event.x,  event.y))
        #A[1]=np.int(np.round((1-A[1])*array2d.shape[1]))
        #A[0]=np.int(np.round((A[0])*array2d.shape[0]))
        try:
            y = np.round(event.xdata)
        except:
            return
        x = np.round(event.ydata)
        #ARRAY MAPPING IS first axis y(rows) and second axis is cols (x)
        if all(np.isnan(array3d[x, y, :])):
            #if there are no points to plot (all nan) then return
            return

        #Plot second scatter data.
        if array3d2 is not None:
            if isinstance(array3d2, list):
                if yerror3d is None:
                    w = np.ones(array3d[x, y, :].shape)
                else:
                    w = basic.rescale(1. / yerror3d[x, y, :], [1, 2])
                markers = ['*', '+', 's', 'd', 'x', 'v', '<', '>', '^']
                m = 0
                for arr in array3d2:
                    print("%d, %d, %d" % (x, y, m))
                    P.scatter(xScat, arr[x, y, :], marker=markers[m])
                    idx = ~(np.isnan(arr[x, y, :])
                            | np.isnan(array3d[x, y, :]))
                    #c=insar.crosscorrelate(basic.nonan(w[idx]*arr[x, y,idx]),basic.nonan(w[idx]*array3d[x, y,idx]))
                    slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(
                        basic.nonan(w[idx] * arr[x, y, idx]),
                        basic.nonan(w[idx] * array3d[x, y, idx]))
                    P.annotate(str("r2[%s]: %0.2f" % (markers[m], r_value)),
                               (0, 0.9 - m * 0.05),
                               xycoords='axes fraction')
                    m = m + 1
            else:
                if xerror3d2 is None:
                    xerr = None
                else:
                    xerr = xerror3d2[x, y, :]
                if yerror3d2 is None:
                    yerr = None
                else:
                    yerr = yerror3d2[x, y, :]
                P.errorbar(xScat,
                           array3d2[x, y, :],
                           xerr=xerr,
                           yerr=yerr,
                           marker='*',
                           fmt='o')

        #Plot function result as scatter data.
        p = None
        if fn is not None:
            if fn == 'linear_amplitude_annual':
                dataMask = ~np.isnan(array3d[x, y, :])
                p0 = np.array([1, 0, 0, basic.nonan(array3d[x, y, :]).mean()])
                fitfun = lambda p: (p[0] + p[1] * xScat[dataMask] / 365.
                                    ) * np.cos(2 * np.pi * xScat[dataMask] /
                                               365. + p[2]) + p[3]
                xScat2 = np.linspace(xScat.min(), xScat.max())
                fitfun2 = lambda p: (p[0] + p[1] * xScat2 / 365.) * np.cos(
                    2 * np.pi * xScat2 / 365. + p[2]) + p[3]
                #errfun=lambda p: sum(abs(basic.nonan(array3d[x, y,:])-fitfun(p)));
                if yerror3d is None:
                    w = np.ones(array3d[x, y, :].shape)
                else:
                    w = basic.rescale(1. / yerror3d[x, y, :], [1, 2])
                errfun = lambda p: basic.nonan(w * array3d[x, y, :]) - w[
                    dataMask] * fitfun(p)
                #p=scipy.optimize.fmin_powell(errfun, p0)
                p = scipy.optimize.leastsq(errfun, p0)
                p = p[0]
                P.scatter(xScat[dataMask], fitfun(p), marker='^')
                sortedxy = np.squeeze(np.dstack([xScat2, fitfun2(p)]))
                sortedxy = sortedxy[sortedxy[:, 0].argsort(), :]
                P.plot(sortedxy[:, 0], sortedxy[:, 1])
                slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(
                    basic.nonan(w * array3d[x, y, :]), w[dataMask] * fitfun(p))
                P.annotate(
                    str("a0:%0.2f\na1:%0.2f\npha:%0.2f\nbias:%0.2f\nr2:%0.2f" %
                        (p[0], p[1], p[2], p[3], r_value**2.)), (0.8, 0.8),
                    xycoords='axes fraction')
            elif fn == 'quadratic_amplitude_annual':
                dataMask = ~np.isnan(array3d[x, y, :])
                p0 = np.array(
                    [1, 0, 0, 0,
                     basic.nonan(array3d[x, y, :]).mean()])
                fitfun = lambda p: (p[0] + p[1] * xScat[dataMask] / 365. + p[
                    2] * (xScat[dataMask] / 365.)**2.) * np.cos(
                        2 * np.pi * xScat[dataMask] / 365. + p[3]) + p[4]
                xScat2 = np.linspace(xScat.min(), xScat.max())
                fitfun2 = lambda p: (p[0] + p[1] * xScat2 / 365. + p[2] * (
                    xScat2 / 365.)**2.) * np.cos(2 * np.pi * xScat2 / 365. + p[
                        3]) + p[4]
                #errfun=lambda p: sum(abs(basic.nonan(array3d[x, y,:])-fitfun(p)));
                if yerror3d is None:
                    w = np.ones(array3d[x, y, :].shape)
                else:
                    w = basic.rescale(1. / yerror3d[x, y, :], [1, 2])
                errfun = lambda p: basic.nonan(w * array3d[x, y, :]) - w[
                    dataMask] * fitfun(p)
                #p=scipy.optimize.fmin_powell(errfun, p0)
                p = scipy.optimize.leastsq(errfun, p0)
                p = p[0]
                P.scatter(xScat[dataMask], fitfun(p), marker='^')
                sortedxy = np.squeeze(np.dstack([xScat2, fitfun2(p)]))
                sortedxy = sortedxy[sortedxy[:, 0].argsort(), :]
                P.plot(sortedxy[:, 0], sortedxy[:, 1])
                slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(
                    basic.nonan(w * array3d[x, y, :]), w[dataMask] * fitfun(p))
                P.annotate(str(
                    "a0:%0.2f\na1:%0.2f\na2:%0.2f\npha:%0.2f\nbias:%0.2f\nr2:%0.2f"
                    % (p[0], p[1], p[2], p[3], p[4], r_value**2.)), (0.8, 0.8),
                           xycoords='axes fraction')

            elif fn == 'annual':
                dataMask = ~np.isnan(array3d[x, y, :])
                p0 = np.array([1, 1, basic.nonan(array3d[x, y, :]).mean()])
                fitfun = lambda p: p[0] * np.cos(2 * np.pi * xScat[dataMask] /
                                                 365. + p[1]) + p[2]
                xScat2 = np.linspace(xScat.min(), xScat.max())
                fitfun2 = lambda p: p[0] * np.cos(2 * np.pi * xScat2 / 365. +
                                                  p[1]) + p[2]
                #errfun=lambda p: sum(abs(basic.nonan(array3d[x, y,:])-fitfun(p)));
                if yerror3d is None:
                    w = np.ones(array3d[x, y, :].shape)
                else:
                    w = basic.rescale(1. / yerror3d[x, y, :], [1, 2])
                errfun = lambda p: basic.nonan(w * array3d[x, y, :]) - w[
                    dataMask] * fitfun(p)
                #p=scipy.optimize.fmin_powell(errfun, p0)
                p = scipy.optimize.leastsq(errfun, p0)
                p = p[0]
                P.scatter(xScat[dataMask], fitfun(p), marker='^')
                sortedxy = np.squeeze(np.dstack([xScat2, fitfun2(p)]))
                sortedxy = sortedxy[sortedxy[:, 0].argsort(), :]
                P.plot(sortedxy[:, 0], sortedxy[:, 1])
                slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(
                    basic.nonan(w * array3d[x, y, :]), w[dataMask] * fitfun(p))
                P.annotate(str("amp:%0.2f\npha:%0.2f\nbias:%0.2f\nr2:%0.2f" %
                               (p[0], p[1], p[2], r_value**2.)), (0.8, 0.8),
                           xycoords='axes fraction')
            else:
                p = None
                P.scatter(xScat, fn(xScat), marker='^')
        #convert axis to date...
        if dateaxis:
            try:
                P.figure(fh.number).axes[0].xaxis_date(tz=None)
                P.figure(fh.number).autofmt_xdate()
            except:
                pass
        #change x y to xMap, yMap
        if yMap is not None:
            xM = ya * x + yb
        else:
            xM = x
        if xMap is not None:
            yM = xa * (y) + xb
        else:
            yM = y
        #x and y are flipped in the try/except block above. So Flip again.
        #if p is not None:
        #    P.title("x,y,[]: " + str(yM) + ", " + str(xM) + ', ' + str(p) )
        #else:
        P.title("x,y,z,z.std: " + str(yM) + ", " + str(xM) + ', ' +
                str(array2d[x, y]) + ', ' +
                str(np.std(basic.nonan(array3d[x, y, :]))))

        # rotate and align the tick labels so they look better
        #P.figure(fh.number).autofmt_xdate()
        # use a more precise date string for the x axis locations in the
        # toolbar
        #P.gca().fmt_xdata = mdates.DateFormatter('%Y-%m-%d')

        if xerror3d is None:
            xerr = None
        else:
            xerr = xerror3d[x, y, :]
        if yerror3d is None:
            yerr = None
        else:
            yerr = yerror3d[x, y, :]
        if modelError:
            yerr = yerror3d[x, y, :]
            yerr[dataMask] = errfun(p)

        P.errorbar(xScat, array3d[x, y, :], xerr=xerr, yerr=yerr, fmt='ro')
        if ylimScat is not None:
            P.ylim(ylimScat)
コード例 #4
0
ファイル: __init__.py プロジェクト: IvanLJF/adore-doris
def histogram_matching(inputArr,
                       histogramArr=None,
                       bins=100,
                       zpdf=None,
                       zbins=None):
    """histogram_matching(inputArr, histogramArr=None, bins=100, zpdf=None, zbins=None)
    """
    if (histogramArr is None) and (zpdf is None):
        print('Error: histogramArr or zpdf has to be specified')
        return
    if (bins <= 1) and (zbins is None):
        print('Skipping histogram matching: bins<=1')
        return inputArr
    if len(zbins) <= 1:
        print('Skipping histogram matching: len(zbins)<=1')
        return inputArr

    dS = inputArr.shape
    lenS = inputArr.size
    s = basic.nonan(inputArr.ravel())

    #Limit matching to majority of the pixels.. We don't want a long trail.
    sm = s.mean()
    ss = s.std()
    sbins = P.np.linspace(sm - 3 * ss, sm + 3 * ss, bins + 1)

    spdf, sbins = P.np.histogram(s, sbins)
    spdf = spdf / P.np.double(sum(spdf))
    sk = P.np.cumsum(spdf)  #spdf * P.np.triu(P.np.ones(dS)) #CDF

    #Histogram to be matched
    if zpdf is None:
        dZ = histogramArr.shape
        lenZ = histogramArr.size
        z = basic.nonan(histogramArr.ravel())
        zm = z.mean()
        zs = z.std()
        zbins = P.np.linspace(zm - 3 * zs, zm + 3 * zs, bins + 1)
        zpdf, zbins = P.np.histogram(z, zbins)
    else:
        #make zpdf match the length of bins
        zpdf = np.interp(sbins, np.linspace(zbins[0], zbins[-1],
                                            zpdf.shape[0]), zpdf)
        zbins = sbins  #zbins no longer needed?.
    zpdf = zpdf / P.np.double(sum(zpdf))
    zk = P.np.cumsum(zpdf)  #G(z), CDF

    #create the image
    p_prev = 0
    z0 = P.np.empty(dS)
    z0[:] = P.np.nan
    for q in xrange(0, bins):
        for p in xrange(p_prev, bins):
            if zk[p] >= sk[q]:
                #print ['replacing from ', sbins[q], ' to ', sbins[q+1] , ' with ', zbins[p]]
                p_prev = p + 1
                q_last = q
                #z0[ P.np.ma.mask_or(inputArr>sbins[q], inputArr<sbins[q+1]) ] = zbins[p];
                if q == 0:
                    z0[inputArr < sbins[q + 1]] = zbins[p]
                else:
                    z0[((inputArr >= sbins[q]).astype(P.np.int) *
                        (inputArr < sbins[q + 1]).astype(P.np.int)).astype(
                            P.np.bool)] = zbins[p]
                #print ['replacing ', ((inputArr>sbins[q]).astype(P.np.int) * (inputArr<sbins[q+1]).astype(P.np.int)).sum(), ' pixels'];
                break  #inner for
    #print('q %f p %f zk %f sk %f' %(q,p,zk[p], sk[q]))
    z0[inputArr >= sbins[q_last]] = zbins[p]

    return z0
コード例 #5
0
ファイル: __init__.py プロジェクト: Terradue/adore-doris
    def onclick(event):
        P.figure(fh.number);
        P.clf();
        #ax = P.gca()
        #inv = ax.transData.inverted()
        #A=inv.transform((event.x,  event.y))
        #A[1]=np.int(np.round((1-A[1])*array2d.shape[1])) 
        #A[0]=np.int(np.round((A[0])*array2d.shape[0]))
        try:
            y=np.round(event.xdata);
        except:
            return
        x=np.round(event.ydata);        
        #ARRAY MAPPING IS first axis y(rows) and second axis is cols (x)
        if all(np.isnan(array3d[x, y,:])):
            #if there are no points to plot (all nan) then return
            return
        
        #Plot second scatter data.
        if array3d2 is not None:        
            if isinstance(array3d2, list):
                if yerror3d is None:
                    w=np.ones(array3d[x, y,:].shape);
                else:
                    w=basic.rescale(1./yerror3d[x,y,:], [1,2])
                markers=['*','+','s','d','x','v','<','>','^']
                m=0;
                for arr in array3d2:  
                    print ("%d, %d, %d" % (x,y,m))                  
                    P.scatter(xScat, arr[x, y,:], marker=markers[m]);
                    idx=~( np.isnan(arr[x, y,:]) | np.isnan(array3d[x, y,:]))
                    #c=insar.crosscorrelate(basic.nonan(w[idx]*arr[x, y,idx]),basic.nonan(w[idx]*array3d[x, y,idx]))
                    slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(basic.nonan(w[idx]*arr[x, y,idx]), basic.nonan(w[idx]*array3d[x, y,idx]))
                    P.annotate(str("r2[%s]: %0.2f" % (markers[m],r_value)), (0,0.9-m*0.05), xycoords='axes fraction')                    
                    m=m+1;
            else:            
                if xerror3d2 is None:
                    xerr=None;
                else:
                    xerr=xerror3d2[x,y,:]
                if yerror3d2 is None:
                    yerr=None;
                else:
                    yerr=yerror3d2[x, y,:]
                P.errorbar(xScat,array3d2[x, y,:], xerr=xerr, yerr=yerr, marker='*', fmt='o');

        #Plot function result as scatter data.
        p=None            
        if fn is not None:
            if fn=='linear_amplitude_annual':
                dataMask=~np.isnan(array3d[x, y,:])
                p0=np.array([1,0,0,basic.nonan(array3d[x, y,:]).mean() ])
                fitfun=lambda p: (p[0]+p[1]*xScat[dataMask]/365. )* np.cos(2*np.pi*xScat[dataMask]/365.+p[2]) + p[3]
                xScat2=np.linspace(xScat.min(),xScat.max())
                fitfun2=lambda p: (p[0]+p[1]*xScat2/365.) * np.cos(2*np.pi*xScat2/365.+p[2]) + p[3]
                #errfun=lambda p: sum(abs(basic.nonan(array3d[x, y,:])-fitfun(p)));
                if yerror3d is None:
                    w=np.ones(array3d[x, y,:].shape);
                else:
                    w=basic.rescale(1./yerror3d[x,y,:], [1,2])
                errfun=lambda p: basic.nonan(w*array3d[x, y,:])-w[dataMask]*fitfun(p);
                #p=scipy.optimize.fmin_powell(errfun, p0)
                p=scipy.optimize.leastsq(errfun, p0);
                p=p[0];
                P.scatter(xScat[dataMask], fitfun(p), marker='^');                
                sortedxy=  np.squeeze(np.dstack([xScat2, fitfun2(p)]));
                sortedxy=sortedxy[sortedxy[:,0].argsort(),:]
                P.plot(sortedxy[:,0], sortedxy[:,1]);
                slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(basic.nonan(w*array3d[x, y,:]),w[dataMask]*fitfun(p))
                P.annotate(str("a0:%0.2f\na1:%0.2f\npha:%0.2f\nbias:%0.2f\nr2:%0.2f" % (p[0], p[1], p[2], p[3], r_value**2.)), (0.8,0.8), xycoords='axes fraction')
            elif fn=='quadratic_amplitude_annual':
                dataMask=~np.isnan(array3d[x, y,:])
                p0=np.array([1,0,0,0,basic.nonan(array3d[x, y,:]).mean() ])
                fitfun=lambda p: (p[0]+p[1]*xScat[dataMask]/365.+p[2]*(xScat[dataMask]/365.)**2. )* np.cos(2*np.pi*xScat[dataMask]/365.+p[3]) + p[4]
                xScat2=np.linspace(xScat.min(),xScat.max())
                fitfun2=lambda p: (p[0]+p[1]*xScat2/365.+p[2]*(xScat2/365.)**2.) * np.cos(2*np.pi*xScat2/365.+p[3]) + p[4]
                #errfun=lambda p: sum(abs(basic.nonan(array3d[x, y,:])-fitfun(p)));
                if yerror3d is None:
                    w=np.ones(array3d[x, y,:].shape);
                else:
                    w=basic.rescale(1./yerror3d[x,y,:], [1,2])
                errfun=lambda p: basic.nonan(w*array3d[x, y,:])-w[dataMask]*fitfun(p);
                #p=scipy.optimize.fmin_powell(errfun, p0)
                p=scipy.optimize.leastsq(errfun, p0);
                p=p[0];
                P.scatter(xScat[dataMask], fitfun(p), marker='^');                
                sortedxy=  np.squeeze(np.dstack([xScat2, fitfun2(p)]));
                sortedxy=sortedxy[sortedxy[:,0].argsort(),:]
                P.plot(sortedxy[:,0], sortedxy[:,1]);
                slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(basic.nonan(w*array3d[x, y,:]),w[dataMask]*fitfun(p))
                P.annotate(str("a0:%0.2f\na1:%0.2f\na2:%0.2f\npha:%0.2f\nbias:%0.2f\nr2:%0.2f" % (p[0], p[1], p[2], p[3], p[4], r_value**2.)), (0.8,0.8), xycoords='axes fraction')


            elif fn=='annual':
                dataMask=~np.isnan(array3d[x, y,:])
                p0=np.array([1,1,basic.nonan(array3d[x, y,:]).mean() ])
                fitfun=lambda p: p[0]* np.cos(2*np.pi*xScat[dataMask]/365.+p[1]) + p[2]
                xScat2=np.linspace(xScat.min(),xScat.max())
                fitfun2=lambda p: p[0]* np.cos(2*np.pi*xScat2/365.+p[1]) + p[2]
                #errfun=lambda p: sum(abs(basic.nonan(array3d[x, y,:])-fitfun(p)));
                if yerror3d is None:
                    w=np.ones(array3d[x, y,:].shape);
                else:
                    w=basic.rescale(1./yerror3d[x,y,:], [1,2])
                errfun=lambda p: basic.nonan(w*array3d[x, y,:])-w[dataMask]*fitfun(p);
                #p=scipy.optimize.fmin_powell(errfun, p0)
                p=scipy.optimize.leastsq(errfun, p0);
                p=p[0];
                P.scatter(xScat[dataMask], fitfun(p), marker='^');                
                sortedxy=  np.squeeze(np.dstack([xScat2, fitfun2(p)]));
                sortedxy=sortedxy[sortedxy[:,0].argsort(),:]
                P.plot(sortedxy[:,0], sortedxy[:,1]);
                slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(basic.nonan(w*array3d[x, y,:]),w[dataMask]*fitfun(p))
                P.annotate(str("amp:%0.2f\npha:%0.2f\nbias:%0.2f\nr2:%0.2f" % (p[0], p[1], p[2], r_value**2.)), (0.8,0.8), xycoords='axes fraction')
            else:      
                p=None             
                P.scatter(xScat, fn(xScat), marker='^');       
        #convert axis to date...             
        if dateaxis:
            try:
                P.figure(fh.number).axes[0].xaxis_date(tz=None)
                P.figure(fh.number).autofmt_xdate()
            except:
                pass
        #change x y to xMap, yMap
        if yMap is not None:
            xM=ya*x+yb;
        else:
            xM=x;
        if xMap is not None:
            yM=xa*(y)+xb;
        else:
            yM=y;
        #x and y are flipped in the try/except block above. So Flip again.
        #if p is not None:
        #    P.title("x,y,[]: " + str(yM) + ", " + str(xM) + ', ' + str(p) )
        #else:
        P.title("x,y,z,z.std: " + str(yM) + ", " + str(xM) + ', ' + str(array2d[x,y]) +', ' + str(np.std(basic.nonan(array3d[x, y,:]))) )
        
        # rotate and align the tick labels so they look better
        #P.figure(fh.number).autofmt_xdate()
        # use a more precise date string for the x axis locations in the
        # toolbar
        #P.gca().fmt_xdata = mdates.DateFormatter('%Y-%m-%d')

        if xerror3d is None:
            xerr=None;
        else:
            xerr=xerror3d[x,y,:]
        if yerror3d is None:
            yerr=None;
        else:
            yerr=yerror3d[x, y,:]        
        if modelError:
            yerr=yerror3d[x, y,:] 
            yerr[dataMask]=errfun(p)
            
        P.errorbar(xScat,array3d[x, y,:], xerr=xerr, yerr=yerr, fmt='ro');
        if ylimScat is not None:
            P.ylim(ylimScat);
コード例 #6
0
ファイル: __init__.py プロジェクト: Terradue/adore-doris
def histogram_matching(inputArr, histogramArr=None, bins=100, zpdf=None, zbins=None):
    """histogram_matching(inputArr, histogramArr=None, bins=100, zpdf=None, zbins=None)
    """
    if (histogramArr is None) and (zpdf is None):
        print('Error: histogramArr or zpdf has to be specified')
        return 
    if (bins<=1) and (zbins is None):
        print('Skipping histogram matching: bins<=1')
        return inputArr
    if len(zbins)<=1:
        print('Skipping histogram matching: len(zbins)<=1')
        return inputArr
        
    dS=inputArr.shape
    lenS=inputArr.size
    s=basic.nonan(inputArr.ravel())

    #Limit matching to majority of the pixels.. We don't want a long trail.
    sm=s.mean()
    ss=s.std()
    sbins=P.np.linspace(sm-3*ss,sm+3*ss,bins+1);    

    spdf, sbins=P.np.histogram(s, sbins)
    spdf=spdf/P.np.double(sum(spdf))
    sk= P.np.cumsum(spdf) #spdf * P.np.triu(P.np.ones(dS)) #CDF

    #Histogram to be matched
    if zpdf is None:
        dZ=histogramArr.shape
        lenZ=histogramArr.size
        z=basic.nonan(histogramArr.ravel())
        zm=z.mean()
        zs=z.std()
        zbins=P.np.linspace(zm-3*zs,zm+3*zs,bins+1);            
        zpdf, zbins=P.np.histogram(z, zbins)
    else:
      #make zpdf match the length of bins
      zpdf=np.interp(sbins, np.linspace(zbins[0], zbins[-1], zpdf.shape[0]), zpdf);
      zbins=sbins #zbins no longer needed?.
    zpdf=zpdf/P.np.double(sum(zpdf))
    zk= P.np.cumsum(zpdf) #G(z), CDF
    
    #create the image
    p_prev=0
    z0=P.np.empty(dS)
    z0[:]=P.np.nan
    for q in xrange(0,bins):
        for p in xrange(p_prev,bins):
            if zk[p] >= sk[q]:
                #print ['replacing from ', sbins[q], ' to ', sbins[q+1] , ' with ', zbins[p]]
                p_prev=p+1
                q_last=q
                #z0[ P.np.ma.mask_or(inputArr>sbins[q], inputArr<sbins[q+1]) ] = zbins[p];
                if q==0:
                    z0[ inputArr<sbins[q+1] ] = zbins[p];
                else:
                    z0[ ((inputArr>=sbins[q]).astype(P.np.int) * (inputArr<sbins[q+1]).astype(P.np.int)).astype(P.np.bool) ] = zbins[p];
                #print ['replacing ', ((inputArr>sbins[q]).astype(P.np.int) * (inputArr<sbins[q+1]).astype(P.np.int)).sum(), ' pixels'];
                break #inner for
    #print('q %f p %f zk %f sk %f' %(q,p,zk[p], sk[q]))
    z0[inputArr>=sbins[q_last]]=zbins[p]
    
    return z0
コード例 #7
0
def point_solve_dem(dem,
                    i12s,
                    cohs,
                    h2phs,
                    dem_std,
                    multilook,
                    samples=1000,
                    stepsize=None,
                    figures=False,
                    unwrapped=False):
    """point_solve_dem(dem, i12s, cohs, dem_std, multilook, samples=1000, stepsize=None):
        Solves a single point.
        dem=scalar: dem height for the point
        i12s=vector: observed subtrrefpha, filtphase,unwrap values for point
        cohs= vector: observed coherence values for point
        dem_std= scalar: estimated dem standard dev. for point
        multilook= scalar: interferogram multilooking
        samples=1000: scalar to be used to constract search space. 
        stepsize=scalar: height sensitivity to use instead of samples to constract search space. 
        
        search space = linspace (dem-3*dem_std , dem+3*dem_std , samples) 
        OR
        search space = r_[dem-3*dem_std : dem+3*dem_std : stepSize]
    """
    import numpy as np
    import os
    os.sys.path.append('/d0/bosmanoglu/projectLocker/pythonUnwrap/trunk')
    import insar
    import scipy
    from scipy import special
    if stepsize is None:
        ss = linspace(dem - 3 * dem_std, dem + 3 * dem_std, samples)  #stepsize
    else:
        ss = np.r_[dem - 3 * dem_std:dem + 3 * dem_std:stepsize]
    #convert ss to phase
    sp = np.dot(np.atleast_2d(ss).T, np.atleast_2d(h2phs))  #step phase
    # offset the domain with phase value
    if any(iscomplex(i12s)):
        sp = sp - np.tile(np.angle(i12s), (sp.shape[0], 1))
    else:
        sp = sp - np.tile(i12s, (sp.shape[0], 1))
    #pdf of dem
    pdem = insar.dem.maximum_likelihood.pdf_dem(dem, ss, dem_std)
    #pdf based on InSAR data
    if figures:
        pint = insar.coh2pdfML(cohs, multilook, domain=sp.T)
        for k in xrange(len(pint)):
            plot(ss, pint[k, :])
        pint = basic.nonan(pint, True).prod(0)
        plot(ss, pdem, 'k--')
        plot(ss, pdem * pint / nanmax(pdem * pint), 'k-.')
        plot(ss, pint / nanmax(pint), 'k:')
        print('i12s/cohs/h2phs')
        print(i12s)
        print(cohs)
        print(h2phs)
    else:
        pint = insar.coh2pdfML(cohs, multilook, domain=sp.T).prod(0)

    #joint pdf
    jp = pdem * pint
    return ss[jp.argmax()]