def runAll(path, predictMethodList, predictMethod): users = orig.loadAndUpdateFeatures(path) featureList = orig.featureList() featureList.addByRegex(["action_", "num_of_devices", "total_time"], users) category = 'country_destination' X_byteDF, y = orig.getXbyte(users, featureList.get(), category) return runClf2net(predictMethodList, predictMethod, X_byteDF, y)
def __init__(self, args, genes=None, mutationFactor=0.01): self.args = args featureListClass = orig.featureList() featureListClass.addByRegex(['action_','num_of_devices'],self.args['users']) self.featureList = featureListClass.get() self.category = 'country_destination' self.mutationFactor = mutationFactor self.fitScoreNorm = 0 self.fitScore = 0 self.fit = 0 if genes is None : self.genes = [] for i in range(len(self.featureList)): if getRandTrueFalse(): self.genes.append(self.featureList[i]) else : self.genes = genes # self.predictMethod = LogisticRegression() self.predictMethod = tree.DecisionTreeClassifier()
def __init__(self, args, genes=None, mutationFactor=0.01): self.args = args featureListClass = orig.featureList( usersCol=self.args['users'].columns) self.featureList = featureListClass.get() self.category = 'country_destination' self.mutationFactor = mutationFactor self.fitScoreNorm = 0 self.fitScore = 0 self.fit = 0 if genes is None: self.genes = [] for i in range(len(self.featureList)): if getRandTrueFalse(): self.genes.append(self.featureList[i]) else: self.genes = genes # self.predictMethod = LogisticRegression() self.predictMethod = self.args['predictMethod']
def __init__(self, args, genes=None, mutationFactor=0.01): self.args = args featureListClass = orig.featureList( usersCol=self.args['users'].columns) self.featureList = featureListClass.get() self.category = 'country_destination' self.mutationFactor = mutationFactor self.fitScoreNorm = 0 self.fitScore = 0 self.fit = 0 self.maxNumOfNurons = 100 self.minAlpaP2 = -6 self.maxAlpaP2 = 4 if genes is None: self.genes = self.getRandomGenes() else: self.genes = genes self.predictMethod = MLPClassifier(solver='lbfgs', alpha=self.genes[0], hidden_layer_sizes=tuple( self.genes[1:]))
# -*- coding: utf-8 -*- """ Created on Tue Mar 7 17:37:46 2017 @author: Alon """ import basicLib.loadAndTest as orig from sklearn.neural_network import MLPClassifier import clfNdfOtherAll as clfAll from sklearn import tree users = orig.loadAndUpdateFeatures( '../input/users_2014_actions_combined_device.csv') featureListClass = orig.featureList() featureListClass.addByRegex(['action_', 'num_of_devices'], users) featureList = featureListClass.get() category = 'country_destination' predictMethod1 = MLPClassifier(solver='lbfgs', alpha=1e-5) predictMethod2 = MLPClassifier(solver='lbfgs', alpha=1e-5) predictMethod3 = tree.DecisionTreeClassifier() clfNdfOtherAllClass = clfAll.clfNdfOtherAll(predictMethod1, predictMethod3) prediction, fit, y_test = orig.fitPredictAndTest(users, featureList, category, clfNdfOtherAllClass, random_state=1) print(fit) print(clfNdfOtherAllClass.accuracy_score(y_test))
# -*- coding: utf-8 -*- """ Created on Thu Mar 9 11:33:24 2017 @author: Alon """ import featureRapperClf as frc import basicLib.loadAndTest as orig from sklearn import tree import time predictMethod = tree.DecisionTreeClassifier() users = orig.loadAndUpdateFeatures('../input/users_2014_sessions_norm.csv') featureListClass = orig.featureList(usersCol=users.columns) featureListAll = featureListClass.get() category = 'country_destination' featureList = [ 'action_set_password_##_submit_##_set_password', 'action_authenticate_##_submit_##_login' ] featureRapper = frc.featureRapperClf(predictMethod, featureList) startRun = time.clock() prediction, fit = orig.fitPredictAndTest(users, featureListAll, category, featureRapper, random_state=1)