コード例 #1
0
def stateEnergy(psi: List[tn.Node], H: HOp):
    E = 0
    for i in range(len(psi)):
        psiCopy = bops.copyState(psi)
        single_i = bops.copyState([H.singles[i]])[0]
        psiCopy[i] = bops.permute(tn.contract(psiCopy[i][1] ^ single_i[0], name=('site' + str(i))), [0, 2, 1])
        E += bops.getOverlap(psiCopy, psi)
        bops.removeState(psiCopy)
        tn.remove_node(single_i)
    for i in range(len(psi) - 1):
        psiCopy = bops.copyState(psi)
        r2l = bops.copyState([H.r2l[i+1]])[0]
        l2r = bops.copyState([H.l2r[i]])[0]
        psiCopy[i][2] ^ psiCopy[i+1][0]
        psiCopy[i][1] ^ l2r[0]
        r2l[0] ^ psiCopy[i+1][1]
        l2r[2] ^ r2l[2]
        M = tn.contract_between(psiCopy[i], \
                                tn.contract_between(l2r, tn.contract_between(r2l, psiCopy[i+1])))
        if bops.multiContraction(M, M, '0123', '0123*').tensor != 0:
            [psiCopy, te] = bops.assignNewSiteTensors(psiCopy, i, M, '>>')
            E += bops.getOverlap(psiCopy, psi)
        bops.removeState(psiCopy)
        tn.remove_node(r2l)
        tn.remove_node(l2r)
    return E
コード例 #2
0
def XXVar(statesDir: str, outDir: str, NA, theta, phi):
    maxBondDim = 100
    res = np.zeros(2, dtype=complex)
    U = tn.Node(
        np.matmul(ru.getUPhi(np.pi * phi / 2, 2),
                  ru.getUTheta(np.pi * theta / 2, 2)))
    with open(statesDir + 'psiXX_NA_' + str(NA) + '_NB_' + str(NA), 'rb') as f:
        psi = pickle.load(f)
    psiCopy = bops.relaxState(psi, 64)
    res[0] = bops.getOverlap(psi, psiCopy)
    bops.removeState(psi)
    for i in range(NA):
        psiCopy[i] = bops.permute(
            bops.multiContraction(psiCopy[i], U, '1', '0'), [0, 2, 1])
    doublePsi = [None for j in range(len(psiCopy))]
    for j in range(len(psiCopy)):
        doublePsi[j] = doubleMPSSite(psiCopy[j])
    doubleCopy = bops.copyState(doublePsi)
    for j in range(NA):
        doublePsi[j] = bops.permute(
            bops.multiContraction(doublePsi[j], E, '1', '0', cleanOr1=True),
            [0, 2, 1])
    res[1] = bops.getOverlap(doublePsi, doubleCopy)

    with open(
            outDir + 'XXVar_NA_' + str(NA) + '_t_' + str(theta) + '_p_' +
            str(phi), 'wb') as f:
        pickle.dump(res, f)
    print(res)
コード例 #3
0
def expectationValues(psi: List[tn.Node], vs: List[List[np.array]]):
    vs = np.round(vs, 10)
    n = len(vs)
    NA = len(vs[0])
    result = 1
    # result = np.eye(2, dtype=complex)
    for copy in range(n):
        psiCopy = bops.copyState(psi)
        for alpha in range(NA - 1, -1, -1):
            overlap = np.matmul(vs[copy][alpha],
                                np.conj(vs[np.mod(copy + 1, n)][alpha]))
            toEstimate = np.outer(vs[copy][alpha],
                                  np.conj(vs[np.mod(copy + 1, n)][alpha]))
            if np.abs(np.round(overlap, 8)) == 2:
                toMeasure = toEstimate
            else:
                hermitianComponent = np.random.randint(2)
                if hermitianComponent:
                    toMeasure = (toEstimate +
                                 np.conj(np.transpose(toEstimate)))
                else:
                    toMeasure = (toEstimate -
                                 np.conj(np.transpose(toEstimate)))
            psiCopy[alpha] = bops.permute(bops.multiContraction(psiCopy[alpha], tn.Node(toMeasure), \
                                                   '1', '1'), [0, 2, 1])
            psiCopy = bops.shiftWorkingSite(psiCopy, alpha, '<<')
        result *= bops.getOverlap(psiCopy, psi)
        # result = np.matmul(result, toMeasure)
        bops.removeState(psiCopy)
    return result
コード例 #4
0
ファイル: trotter.py プロジェクト: ZENG-Hui/DMRG_py
def trotterSweep(trotterGates, psi, startSite, endSite, maxBondDim=1024):
    psiCopy = bops.copyState(psi)
    truncErr = 0
    N = len(psi)
    for k in [endSite - i for i in range(startSite, endSite)]:
        M = bops.multiContraction(psiCopy[k - 1], psiCopy[k], [2], [0])
        M = bops.permute(
            bops.multiContraction(M, trotterGates[k - 1], [1, 2], [0, 1]),
            [0, 2, 3, 1])
        [l, r, currTruncErr] = bops.svdTruncation(M,
                                                  M[:2],
                                                  M[2:],
                                                  '<<',
                                                  maxBondDim,
                                                  leftName='site' + str(k - 1),
                                                  rightName='site' + str(k),
                                                  edgeName='v' + str(k))
        if currTruncErr > truncErr:
            truncErr = currTruncErr
        psiCopy[k] = r
        psiCopy[k - 1] = l
        bops.multiContraction(r, r, [1, 2], [1, 2, '*'])
    for k in range(startSite, endSite):
        M = bops.multiContraction(psiCopy[k], psiCopy[k + 1], [2], [0])
        M = bops.permute(
            bops.multiContraction(M, trotterGates[k], [1, 2], [0, 1]),
            [0, 2, 3, 1])
        [l, r,
         currTruncErr] = bops.svdTruncation(M,
                                            M[:2],
                                            M[2:],
                                            '>>',
                                            maxBondDim,
                                            leftName='site' + str(k),
                                            rightName='site' + str(k + 1),
                                            edgeName='v' + str(k + 1))
        if currTruncErr > truncErr:
            truncErr = currTruncErr
        psiCopy[k] = l
        psiCopy[k + 1] = r
    # For imaginary time propagation, renormalize state.
    norm = bops.getOverlap(psiCopy, psiCopy)
    psiCopy[N - 1].tensor = psiCopy[N - 1].tensor / math.sqrt(abs(norm))
    return psiCopy, truncErr
コード例 #5
0
def randomMeasurement(psi, startInd, endInd):
    d = psi[0].tensor.shape[1]
    res = [-1] * (endInd - startInd)
    psiCopy = bops.copyState(psi)
    for k in [len(psiCopy) - 1 - i for i in range(len(psiCopy) - startInd - 1)]:
        psiCopy = bops.shiftWorkingSite(psiCopy, k, '<<')
    for i in range(startInd, endInd):
        rho = bops.multiContraction(psiCopy[i], psiCopy[i], '02', '02*')
        measurement = np.random.uniform(low=0, high=1)
        covered = 0
        for s in range(len(rho.tensor)):
            if covered < measurement < covered + rho.tensor[s, s]:
                res[i - startInd] = s
                break
            covered += rho.tensor[s, s]
        projectorTensor = np.zeros((d, d), dtype=complex)
        projectorTensor[res[i - startInd], res[i - startInd]] = 1
        projector = tn.Node(projectorTensor, backend=None)
        bops.applySingleSiteOp(psiCopy, projector, i)
        psiCopy = bops.shiftWorkingSite(psiCopy, i, '>>')
        psiCopy[i + 1].tensor /= np.sqrt(bops.getOverlap(psiCopy, psiCopy))
        tn.remove_node(rho)
    bops.removeState(psiCopy)
    return res
コード例 #6
0
# print('<psi|hpsi> = ' + str(bops.getOverlap(psi, hpsi)))
R2 = bops.getRenyiEntropy(psi, 2, int(len(psi) / 2 - 1))

NU = 200
etas = [1, 2, 3, N, int(N * 1.5), N * 2, int(N * 2.5), N * 3]
results = [None] * len(etas)
dt = J * 1e-2
for e in range(len(etas)):
    eta = etas[e]
    sum = 0
    for n in range(NU):
        psiCopy = bops.copyState(psi)
        for j in range(eta):
            onsiteTermsA, neighborTermsA = getHAMatrices(N, C, Omega, delta)
            HA = dmrg.getDMRGH(N, onsiteTermsA, neighborTermsA)
            trotterGates = trotter.getTrotterGates(N, 2, onsiteTermsA, neighborTermsA, dt)
            for i in range(int(T / dt)):
                [psiCopy, truncErr] = trotter.trotterSweep(trotterGates, psiCopy, 0, int(len(psiCopy) / 2 - 1))
        psiCopy2 = bops.copyState(psiCopy)
        projectS(psiCopy, int(len(psiCopy)/2 - 1))
        p = bops.getOverlap(psiCopy, psiCopy2)
        sum += p * p
        bops.removeState(psiCopy)
        bops.removeState(psiCopy2)
    avg = sum / NU
    results[e] = avg * (2**int(len(psi)/2) * (2**int(len(psi)/2) + 1)) - 1

plt.plot(etas, [R2] * len(etas))
plt.plot(etas, results)
plt.show()
コード例 #7
0
def getTridiagonal(HL, HR, H, k, psi, psiCompare=None):
    accuracy = 1e-10  # 1e-12

    v = bops.multiContraction(psi[k], psi[k + 1], '2', '0')
    # Small innaccuracies ruin everything!
    v.set_tensor(v.get_tensor() / bops.getNodeNorm(v))

    psiCopy = bops.copyState(psi)

    base = []
    base.append(v)
    Hv = applyHToM(HL, HR, H, v, k)
    alpha = bops.multiContraction(v, Hv, '0123', '0123*').get_tensor()

    if psiCompare is not None:
        copyV = bops.copyState([v])[0]
        psiCopy = bops.assignNewSiteTensors(psiCopy, k, copyV, '>>')[0]
        print('line 196, k = ' + str(k) + ', overlap = ' +
              str(bops.getOverlap(psiCopy, psiCompare)))

    E = stateEnergy(psi, H)

    w = bops.addNodes(Hv, bops.multNode(v, -alpha))
    beta = bops.getNodeNorm(w)

    # Start with T as an array and turn into tridiagonal matrix at the end.
    Tarr = [[0, 0, 0]]
    Tarr[0][1] = alpha
    counter = 0
    formBeta = 2 * beta  # This is just some value to init formBeta > beta.
    while (beta > accuracy) and (counter <= 50) and (beta < formBeta):
        Tarr[counter][2] = beta
        Tarr.append([0, 0, 0])
        Tarr[counter + 1][0] = beta
        counter += 1

        v = bops.multNode(w, 1 / beta)
        base.append(v)

        if psiCompare is not None:
            copyV = bops.copyState([v])[0]
            psiCopy = bops.assignNewSiteTensors(psiCopy, k, copyV, '>>')[0]
            print('line 219, k = ' + str(k) + ', counter = ' + str(counter) +
                  ', overlap = ' + str(bops.getOverlap(psiCopy, psiCompare)))
        Hv = applyHToM(HL, HR, H, v, k)

        alpha = bops.multiContraction(v, Hv, '0123', '0123*').get_tensor()
        Tarr[counter][1] = alpha
        w = bops.addNodes(bops.addNodes(Hv, bops.multNode(v, -alpha)), \
                          bops.multNode(base[counter-1], -beta))
        formBeta = beta
        beta = bops.getNodeNorm(w)
    T = np.zeros((len(Tarr), len(Tarr)))
    T[0][0] = Tarr[0][1]
    if len(Tarr) > 1:
        T[0][1] = Tarr[0][2]
    for i in range(1, len(Tarr) - 1):
        T[i][i - 1] = Tarr[i][0]
        T[i][i] = Tarr[i][1]
        T[i][i + 1] = Tarr[i][2]
    T[len(Tarr) - 1][len(Tarr) - 2] = Tarr[len(Tarr) - 1][0]
    T[len(Tarr) - 1][len(Tarr) - 1] = Tarr[len(Tarr) - 1][1]
    return [T, base]
コード例 #8
0
t = 0.5
onsiteTerm = np.zeros((2, 2))
onsiteTerm[1][1] = 0
onsiteTerm[0][0] = 0
neighborTerm = np.zeros((4, 4))
neighborTerm[1][2] = 1
neighborTerm[2][1] = 1
neighborTerm[0][0] = 0
neighborTerm[3][3] = 0
psi1 = bops.getStartupState(N)
H = getDMRGH(N, onsiteTerm, neighborTerm)
HLs, HRs = getHLRs(H, psi1)
psi1, E0, truncErrs = getGroundState(H, HLs, HRs, psi1, None)
print(stateEnergy(psi1, H))
print(len(truncErrs))
psi2 = bops.getOrthogonalState(psi1)
print(bops.getOverlap(psi1, psi2))
HLs, HRs = getHLRs(H, psi2)
psi2, E0, truncErrs = getGroundState(H, HLs, HRs, psi2, psi1)
print(stateEnergy(psi2, H))
print(bops.getOverlap(psi1, psi2))
print(len(truncErrs))
# psi3 = bops.addStates(psi2, psi)
# print(bops.getOverlap(psi, psi3))
# print(bops.getOverlap(psi2, psi3))
# psi3[0] = bops.multNode(psi3[0], 1 / math.sqrt(bops.getOverlap(psi3, psi3)))
# H, HLs, HRs = getH(N, onsiteTerm, neighborTerm, psi3)
# psi3, E0, truncErrs = getGroundState(H, HLs, HRs, N, psi3)
# print(stateEnergy(psi3, H))
# print(bops.getOverlap(psi, psi3))
# print(bops.getOverlap(psi2, psi3))