コード例 #1
0
    def calibrate_array(self):
        self.file_list = basic_file_app.get_file_list(self.file_path)
        my_calibration = calibration_analytical_from_array.CalibrateArray(
            self.calibration_parameter, self.directory)

        for x in self.file_list:
            my_array = basic_file_app.load_2d_array(self.file_path + x, 0, 1,
                                                    2)
            my_calibration.set_input_array(my_array, x)
            my_calibration.main()
            my_calibration.save_data(
                "back: " + path_background + "RZP-structure:___" +
                rzp_structure_name, roi_list)
コード例 #2
0
 def px_shift(self):
     self.file_list = basic_file_app.get_file_list(self.new_dir)
     print(len(self.file_list))
     reference = basic_file_app.load_2d_array(
         self.new_dir + '/' + self.file_list[0], 0, 1, 1)
     #print("new file list", self.file_list)
     for x in self.file_list[1:]:
         image_array = basic_file_app.load_2d_array(self.new_dir + '/' + x,
                                                    0, 1, 1)
         ShiftIt = px_shift_on_picture_array.PixelShift(
             reference, self.reference_points)
         corrected_array = ShiftIt.evaluate_shift_for_input_array(
             image_array)
         self.overwrite_original(x, corrected_array)
         plt.close()
コード例 #3
0
def plot_them_all(path, column_x, column_y, skip_rows):
    file_list = basic_file_app.get_file_list(path)
    for x in file_list[7:13]:
        array = basic_file_app.load_2d_array(path + '/' + x, column_x,
                                             column_y, skip_rows)

        plt.figure(1)
        plt.plot(array[:, 0],
                 -np.log(array[:, 1]) + 14,
                 marker=".",
                 markersize=3)
        plt.xlabel("eV")
        plt.ylabel("-log(signal) - const")
        plt.legend()

    plt.show()
コード例 #4
0
    def avg_of_stack(self):
        self.file_list = basic_file_app.get_file_list(self.directory)
        print("xxxxxxxxxxxxxx mean value of stack xxxxxxxxxxxxx")
        print(self.directory, "path")
        print(self.file_list)
        my_avg = basic_file_app.StackMeanValue(self.file_list, self.directory,
                                               1, 2, 4)
        my_result = my_avg.get_result()
        plt.figure(10)
        plt.plot(my_result[:, 0],
                 -np.log(my_result[:, 1]) + 16,
                 label="my_avg")
        save_pic = os.path.join(self.directory,
                                self.directory[4:] + "_mean" + ".png")
        plt.savefig(save_pic, bbox_inches="tight", dpi=500)

        return my_result
コード例 #5
0
def batch_single_pictures_background():

    for x in file_list_raws:
        open_stack_raws = basic_image_app.SingleImageOpen(x, path_picture)
        my_single_picture = open_stack_raws.return_single_image()
        scaled_straylight_correction = process_raw_images_sum_then_back.ImagePreProcessing(
            my_single_picture, x[:-4], my_background, "straylight", roi_list1)
        scaled_straylight_correction.main()
        scaled_straylight_correction.save_data(
            "single_image_sum_and_then_back")


#batch_single_pictures_background()

path = "data/SiN_105ms_variant_2/"
binned_file_list = basic_file_app.get_file_list(path)
reference_points = (1128, 980)


def batch_pixel_correction():
    reference_array = basic_file_app.load_2d_array(path + binned_file_list[0],
                                                   0, 1, 4)
    PixelCorrection = px_shift_on_picture_array.PixelShift(
        reference_array, reference_points)
    my_result = reference_array

    for x in binned_file_list[1:]:
        my_array = basic_file_app.load_2d_array(path + x, 0, 1, 4)
        corrected_array = PixelCorrection.evaluate_shift_for_input_array(
            my_array)
        my_result[:, 1] = my_result[:, 1] + corrected_array[:, 1]
コード例 #6
0
 def create_file_list(self):
     return basic_file_app.get_file_list(self.path)
コード例 #7
0
        result = np.vstack((header, header2, result))
        save_name = os.path.join(new_dir, file_name + 'avg' + ".txt")
        np.savetxt(save_name,
                   result,
                   delimiter=' ',
                   header='string',
                   comments='',
                   fmt='%s')


my_path = "results_cal_5000ms_pos2/"
avg_path = "results_avg"

result_file_name = "20210628_5000ms_pos2_avg"
#os.mkdir(avg_path)
my_files = basic_file_app.get_file_list(my_path)
#class(path, scale, column) -> skiprows in the code
test = AvgOnStack1Column(my_path, 1., 2)
my_avg = test.integrate_over_stack()
#create x-axis from one of the files (path+name, column, skip-rows)
my_x = basic_file_app.load_1d_array(my_path + '/' + my_files[0], 1, 6)
my_error = test.standard_deviation()
test.save_statistics(avg_path, result_file_name)

#plt.scatter(my_x[:], my_avg[:])
plt.figure(1)
plt.errorbar(my_x[:],
             my_avg[:],
             yerr=my_error,
             fmt="o",
             label=result_file_name)