コード例 #1
0
ファイル: twist_z.py プロジェクト: sohale/implisolid
    def implicitFunction(self, p):
        check_vector3_vectorized(p)

        N = p.shape[0]
        # print "self.lamda", self.lamda
        theta = p[:, 2] * self.lamda
        # print theta.shape
        # assert theta.shape == (N,)
        ca = np.cos(theta)
        sa = np.sin(theta)
        # print theta.shape, "theta"
        # print theta

        p2 = np.concatenate((
            ca[:, np.newaxis] * p[:, 0, np.newaxis] -
            sa[:, np.newaxis] * p[:, 1, np.newaxis],
            sa[:, np.newaxis] * p[:, 0, np.newaxis] +
            ca[:, np.newaxis] * p[:, 1, np.newaxis],
            p[:, 2, np.newaxis],
        ),
                            axis=1)

        v = self.base_object.implicitFunction(p2)
        check_scalar_vectorized(v)
        return v
コード例 #2
0
ファイル: crisp_csg.py プロジェクト: sohale/implisolid
 def implicitFunction(self, p):
     check_vector3_vectorized(p)
     va = self.a.implicitFunction(p)
     vb = self.b.implicitFunction(p)
     c = 1.0 - np.greater(va, vb)
     v = va * c + vb * (1 - c)
     check_scalar_vectorized(v)
     return v
コード例 #3
0
ファイル: ellipsoid.py プロジェクト: sohale/implisolid
 def implicitFunction(self, p):
     check_vector3_vectorized(p)
     p = np.concatenate((p, np.ones((p.shape[0], 1))), axis=1)
     tp = np.dot(self.invmatrix, np.transpose(p))
     tp = np.transpose(tp)
     tp = tp[:, :3]
     v = self.base_object.implicitFunction(tp)
     check_scalar_vectorized(v)
     return v
コード例 #4
0
ファイル: ellipsoid.py プロジェクト: sohale/implisolid
 def implicitFunction(self, pa):
     check_vector3_vectorized(pa)
     pa = np.concatenate((pa, np.ones((pa.shape[0], 1))), axis=1)
     tp = np.dot(self.invmatrix, np.transpose(
         pa))  # inefficient. todo: multiply from right => will be efficient
     tp = np.transpose(tp)
     tp = tp[:, :3]
     v = self.sphere.implicitFunction(tp)
     check_scalar_vectorized(v)
     return v
コード例 #5
0
ファイル: simple_blend.py プロジェクト: sohale/implisolid
    def implicitFunction(self, p):
        check_vector3_vectorized(p)
        va = self.a.implicitFunction(p)
        vb = self.b.implicitFunction(p)

        fa = self.afactor
        fb = self.bfactor
        v = -(1 - (fa*np.exp(va) + fb*np.exp(vb)) / (fa+fb))
        check_scalar_vectorized(v)
        return v
コード例 #6
0
    def ellipsoid_point_and_gradient_vectorized(self,
                                                m,
                                                xa,
                                                correctGrad,
                                                center=None):
        """ Checks if the point x is on the surface, and if the gradient is correct."""

        e = vector3.Ellipsoid(m)
        msg = "Ellipsoid(m): " + str(e)

        va = e.implicitFunction(xa)
        ga = e.implicitGradient(xa)
        check_vector3_vectorized(ga)
        N = xa.shape[0]
        check_scalar_vectorized(va, N)
        assert ga.ndim == 2
        assert ga.shape == (N, 3)
        assert correctGrad.shape == (N, 3)

        correctScalar = 0
        less_a = np.less(np.abs(va - correctScalar), TOLERANCE)

        if not np.all(less_a):
            sys.stderr.write("Some error:")
            sys.stderr.write(xa)
            sys.stderr.write(va)
            sys.stderr.write(ga)
            sys.stderr.write(e)

        self.assertTrue(np.all(less_a),
                        ("Implicit Function's scalar value incorrect"))

        for i in range(ga.shape[0]):
            (are_parallel, are_directed) = vectors_parallel_and_direction(
                ga[i, :], correctGrad[i, :])
            self.assertTrue(are_parallel,
                            "Incorrect gradient: not parallel " + msg)
            self.assertTrue(are_directed,
                            "parallel but opposite directions " + msg)