def main(): # A simple description description = 'spock Advanced Tutorial' # Build out the parser by passing in Spock config objects as *args after description config = ConfigArgBuilder(ModelConfig, DataConfig, SGDConfig, desc=description).generate() # Instantiate our neural net using basic_nn = BasicNet(model_config=config.ModelConfig) # Make some random data (BxH): H has dim of features in x_data = torch.rand(config.DataConfig.n_samples, config.ModelConfig.n_features) y_data = torch.randint(0, 3, (config.DataConfig.n_samples,)) # Run some training train(x_data, y_data, basic_nn, config.ModelConfig, config.DataConfig, config.SGDConfig)
def main(): # A simple description description = 'spock Tutorial' # Build out the parser by passing in Spock config objects as *args after description config = ConfigArgBuilder( ModelConfig, desc=description, create_save_path=True).save(file_extension='.toml').generate() # Instantiate our neural net using basic_nn = BasicNet(model_config=config.ModelConfig) # Make some random data (BxH): H has dim of features in test_data = torch.rand(10, config.ModelConfig.n_features) result = basic_nn(test_data) print(result)