コード例 #1
0
ファイル: data_loader.py プロジェクト: seujung/SNAIL-gluon
def loader(config, ctx):
    """
    Description : dataloder for omniglot dataset
    """
    N = config.N
    K = config.K
    iterations = config.iterations
    batch_size = config.batch_size
    download = config.download

    train_dataset = OmniglotDataset(mode='train', download=download)
    test_dataset = OmniglotDataset(mode='test', download=download)

    tr_sampler = BatchSampler(labels=train_dataset.y,\
                                          classes_per_it=N,\
                                          num_samples=K,\
                                          iterations=iterations,\
                                          batch_size=batch_size)

    te_sampler = BatchSampler(labels=test_dataset.y,\
                                          classes_per_it=N,\
                                          num_samples=K,\
                                          iterations=iterations,\
                                          batch_size=int(batch_size / len(ctx)))

    tr_dataloader = DataLoader(train_dataset, batch_sampler=tr_sampler)
    te_dataloader = DataLoader(test_dataset, batch_sampler=te_sampler)

    return tr_dataloader, te_dataloader
コード例 #2
0
    def train(self, train_x, train_y, nb_epochs = 1000, batch_size = 1000, lr = 0.1):
        self.batch_sampler = BatchSampler(batch_size)
        costs = []
        accuracies = []

        for epoch in range(nb_epochs):
            lr_decay = lr * (nb_epochs - epoch)/nb_epochs

            batch_x, batch_y = self.batch_sampler.sample(train_x, train_y)
            print("Shape batch_x: " + str(batch_x.shape))
            print("Shape train_y: " + str(batch_y.shape))

            cost, y_hat = self.__forward_prop(batch_x, batch_y)

            grad = self.__backward_prop(batch_x, batch_y, y_hat)

            self.learning_update(grad, lr)

            if epoch%100 == 0:
                prediction = self.predict(train_x) > 0.5
                accuracy = self.metrics_tracker.accuracy(train_y, prediction)
                print("Epoch: " + str(epoch))
                print("Cost: " + str(cost))
                print("Gradients (W, b): " + str(grad_w)+ ", " + str(grad_b))
                print("Weights: " + str(self.weights) + ", " + str(self.bias))
                print("Accuracy: " + str(accuracy))

                costs.append(cost)
                accuracies.append(accuracy)
        return accuracies, costs
コード例 #3
0
def init_dataset(opt):
    '''
    Initialize the datasets, samplers and dataloaders
    '''
    if opt.dataset == 'omniglot':
        train_dataset = OmniglotDataset(mode='train')
        val_dataset = OmniglotDataset(mode='val')
        trainval_dataset = OmniglotDataset(mode='trainval')
        test_dataset = OmniglotDataset(mode='test')
    elif opt.dataset == 'mini_imagenet':
        train_dataset = MiniImagenetDataset(mode='train')
        val_dataset = MiniImagenetDataset(mode='val')
        trainval_dataset = MiniImagenetDataset(mode='val')
        test_dataset = MiniImagenetDataset(mode='test')

    tr_sampler = BatchSampler(labels=train_dataset.y,
                              classes_per_it=opt.num_cls,
                              num_samples=opt.num_samples,
                              iterations=opt.iterations,
                              batch_size=opt.batch_size)

    val_sampler = BatchSampler(labels=val_dataset.y,
                               classes_per_it=opt.num_cls,
                               num_samples=opt.num_samples,
                               iterations=opt.iterations,
                               batch_size=opt.batch_size)

    trainval_sampler = BatchSampler(labels=trainval_dataset.y,
                                    classes_per_it=opt.num_cls,
                                    num_samples=opt.num_samples,
                                    iterations=opt.iterations,
                                    batch_size=opt.batch_size)

    test_sampler = BatchSampler(labels=test_dataset.y,
                                classes_per_it=opt.num_cls,
                                num_samples=opt.num_samples,
                                iterations=opt.iterations,
                                batch_size=opt.batch_size)

    tr_dataloader = torch.utils.data.DataLoader(train_dataset,
                                                batch_sampler=tr_sampler)

    val_dataloader = torch.utils.data.DataLoader(val_dataset,
                                                 batch_sampler=val_sampler)

    trainval_dataloader = torch.utils.data.DataLoader(
        trainval_dataset, batch_sampler=trainval_sampler)

    test_dataloader = torch.utils.data.DataLoader(test_dataset,
                                                  batch_sampler=test_sampler)
    return tr_dataloader, val_dataloader, trainval_dataloader, test_dataloader
コード例 #4
0
class LinearRegression(Predictor):
    def __init__(self):
        self.weights = None
        self.bias = None
        self.batch_sampler = None

    def train(self, train_x, train_y, nb_epochs = 1000, batch_size = 1000, lr = 0.1):
        self.weights = np.random.randn(*(1, train_x.shape[1]))
        self.bias = np.zeros((1, train_x.shape[1]))
        self.batch_sampler = BatchSampler(batch_size)

        for epoch in range(nb_epochs):
            batch_x, batch_y = self.batch_sampler.sample(train_x, train_y)
            y_hat = self.predict(batch_x)
            cost = self.__compute_cost(y_hat, batch_y)
            grad_w, grad_b = self.__compute_grad(batch_x, y_hat, batch_y)
            self.weights = self.weights - lr*grad_w
            self.bias = self.bias - lr*grad_b
            print("Epoch: " + str(epoch))
            print("Cost: " + str(cost))
            print("Gradients (W, b): " + str(grad_w)+ ", " + str(grad_b))
            print("Weights: " + str(self.weights) + ", " + str(self.bias))

    def predict(self, test_x):
        return self.weights * test_x + self.bias

    def __compute_cost(self, y_hat, y):
        return np.mean(np.fabs(y_hat**2 - y**2))
    
    def __compute_grad(self, batch_x, y_hat, train_y):
        grad_w = 2*np.mean((y_hat - train_y)*batch_x)
        grad_b = 2*np.mean(y_hat - train_y)
        return grad_w, grad_b
コード例 #5
0
    def train(self, train_x, train_y, nb_epochs = 1000, batch_size = 1000, lr = 0.1):
        self.weights = np.random.randn(*(1, train_x.shape[1]))
        self.bias = np.zeros((1, train_x.shape[1]))
        self.batch_sampler = BatchSampler(batch_size)

        for epoch in range(nb_epochs):
            batch_x, batch_y = self.batch_sampler.sample(train_x, train_y)
            y_hat = self.predict(batch_x)
            cost = self.__compute_cost(y_hat, batch_y)
            grad_w, grad_b = self.__compute_grad(batch_x, y_hat, batch_y)
            self.weights = self.weights - lr*grad_w
            self.bias = self.bias - lr*grad_b
            print("Epoch: " + str(epoch))
            print("Cost: " + str(cost))
            print("Gradients (W, b): " + str(grad_w)+ ", " + str(grad_b))
            print("Weights: " + str(self.weights) + ", " + str(self.bias))
コード例 #6
0
    def create_sampler(self, labels):
        if self.mode == 'train':
            classes_per_it = self.arg_settings.classes_per_it_tr
            num_samples = self.arg_settings.num_support_tr + self.arg_settings.num_query_tr
        else:
            classes_per_it = self.arg_settings.classes_per_it_val
            num_samples = self.arg_settings.num_support_val + self.arg_settings.num_query_val

        return BatchSampler(labels=labels,
                            classes_per_it=classes_per_it,
                            num_samples=num_samples,
                            iterations=self.arg_settings.iterations)
コード例 #7
0
    def test_trainer_8(self):

        init_seed(options={"seed": 0})

        # learning rate scheduler step
        lr_scheduler_step = 15
        num_support_tr = 6
        num_query_tr = 12
        num_samples = num_support_tr + num_query_tr
        # number of random classes per episode for training
        # this should be equal or less than the unique number
        # of classes in the dataset
        classes_per_it = 3
        iterations = 10

        proto_net = ProtoNetTUF(encoder=linear(in_features=2, out_features=3))
        train_engine = TrainEngine(model=proto_net)

        # optimizer to be used for learning
        optimizer = optim.Adam(params=proto_net.parameters(),
                               lr=0.1,
                               weight_decay=0.001)

        # how to reduce the learning rate
        lr_scheduler = torch.optim.lr_scheduler.StepLR(
            optimizer=optimizer,
            gamma=0.01,
            step_size=lr_scheduler_step,
            verbose=True)

        train_loader = TUFDataset(filename=Path("./test_data/train_data.csv"),
                                  dataset_type="train")
        sampler = BatchSampler(labels=train_loader.labels,
                               classes_per_it=classes_per_it,
                               num_samples=num_samples,
                               iterations=iterations,
                               mode="train")

        dataloader = torch.utils.data.DataLoader(train_loader,
                                                 batch_sampler=sampler)
        options = {
            "optimizer": optimizer,
            "lr_scheduler": lr_scheduler,
            "max_epochs": 1,
            "device": "cpu",
            "sample_loader": dataloader,
            "iterations": iterations,
            "num_support_tr": num_support_tr
        }

        train_engine.train(options=options)
コード例 #8
0
    def train(self,
              train_x,
              train_y,
              nb_epochs=1000,
              batch_size=1000,
              lr=0.1,
              lambd=0.000):
        self.weights = np.zeros(shape=(train_x.shape[0], 1))
        self.bias = 0
        self.batch_sampler = BatchSampler(batch_size)
        costs = []
        accuracies = []
        for epoch in range(nb_epochs):
            lr_decay = lr * (nb_epochs - epoch) / nb_epochs

            batch_x, batch_y = self.batch_sampler.sample(train_x, train_y)
            print("Shape batch_x: " + str(batch_x.shape))
            print("Shape train_y: " + str(batch_y.shape))

            y_hat = self.predict(batch_x)
            cost = self.__compute_cost(y_hat, batch_y, lambd)
            grad_w, grad_b = self.__compute_grad(batch_x, y_hat, batch_y,
                                                 lambd)
            self.weights = self.weights - lr_decay * grad_w
            self.bias = self.bias - lr_decay * grad_b

            if epoch % 100 == 0:
                prediction = self.predict(train_x) > 0.5
                accuracy = self.metrics_tracker.accuracy(train_y, prediction)
                print("Epoch: " + str(epoch))
                print("Cost: " + str(cost))
                print("Gradients (W, b): " + str(grad_w) + ", " + str(grad_b))
                print("Weights: " + str(self.weights) + ", " + str(self.bias))
                print("Accuracy: " + str(accuracy))

                costs.append(cost)
                accuracies.append(accuracy)
        return accuracies, costs
コード例 #9
0
def test(configuration: dict) -> None:

    device = configuration['device']

    if device == 'gpu' and not torch.cuda.is_available():
        print(
            "{0} You specified CUDA as device but PyTorch configuration does not support CUDA"
            .format(WARNING))
        print("{0} Setting device to cpu".format(WARNING))
        configuration['device'] = 'cpu'

    # initialize seed for random generation utilities
    init_seed(options=configuration)

    test_model_path = Path(configuration["save_model_path"] + "/" +
                           configuration["model_name"] + "/" +
                           configuration["test_model"])

    model = ProtoNetTUF.build_network(encoder=linear_with_softmax(
        in_features=configuration["in_features"],
        out_features=len(configuration["classes"])),
                                      options=configuration)

    model.load_state_dict(torch.load(test_model_path))

    train_dataset = TUFDataset(filename=Path(configuration["test_dataset"]),
                               dataset_type="test",
                               classes=configuration["classes"])

    print(f"{INFO} Test dataset size {len(train_dataset)} ")

    # number of samples for training
    # num_support_tr is the number of support points per class
    # num_query_tr is the number of query points per class
    num_samples = configuration["num_support_tr"] + configuration[
        "num_query_tr"]
    sampler = BatchSampler(labels=train_dataset.labels,
                           classes_per_it=len(configuration["classes"]),
                           num_samples=num_samples,
                           iterations=configuration["iterations"],
                           mode="train")

    dataloader = torch.utils.data.DataLoader(train_dataset,
                                             batch_sampler=sampler)
    '''
コード例 #10
0
def train(configuration: dict) -> None:

    dirs = os.listdir(configuration["save_model_path"])

    if configuration["model_name"] in dirs:
        raise ValueError(f"Directory {configuration['model_name']} exists")

    # create directory if it doesnt exist
    output_path = Path(configuration["save_model_path"] + "/" +
                       configuration["model_name"])

    # create the output directory
    os.mkdir(path=output_path)

    configuration["save_model_path"] = str(output_path)

    with open(output_path / "config.json", 'w', newline="\n") as fh:
        # save the configuration in the output
        json.dump(configuration, fh)

    device = configuration['device']

    if device == 'gpu' and not torch.cuda.is_available():
        print(
            "{0} You specified CUDA as device but PyTorch configuration does not support CUDA"
            .format(WARNING))
        print("{0} Setting device to cpu".format(WARNING))
        configuration['device'] = 'cpu'

    # initialize seed for random generation utilities
    init_seed(options=configuration)

    # the model to train
    model = ProtoNetTUF.build_network(encoder=convolution_with_linear_softmax(
        in_channels=2,
        out_channels=1,
        kernel_size=1,
        in_features=configuration["in_features"],
        out_features=len(configuration["classes"])),
                                      options=configuration)

    # initialize the optimizer
    optim = torch.optim.Adam(
        params=model.parameters(),
        lr=configuration["optimizer"]["lr"],
        weight_decay=configuration["optimizer"]["weight_decay"])

    # initialize scheduler for learning rate decay
    # Decays the learning rate of each parameter group by gamma every step_size epochs.
    # Notice that such decay can  happen simultaneously with other changes
    # to the learning rate from outside this scheduler.
    # When last_epoch=-1, sets initial lr as lr.
    lr_scheduler = torch.optim.lr_scheduler.StepLR(
        optimizer=optim,
        gamma=configuration["lr_scheduler"]["gamma"],
        step_size=configuration["lr_scheduler"]["step_size"])

    train_dataset = TUFDataset(filename=Path(configuration["train_dataset"]),
                               dataset_type="train",
                               classes=configuration["classes"])

    print(f"{INFO} Training dataset size {len(train_dataset)} ")

    # number of samples for training
    # num_support_tr is the number of support points per class
    # num_query_tr is the number of query points per class
    num_samples = configuration["num_support_tr"] + configuration[
        "num_query_tr"]
    sampler = BatchSampler(labels=train_dataset.labels,
                           classes_per_it=len(configuration["classes"]),
                           num_samples=num_samples,
                           iterations=configuration["iterations"],
                           mode="train")

    dataloader = torch.utils.data.DataLoader(train_dataset,
                                             batch_sampler=sampler)

    # options for the training engine
    options = TrainEngine.build_options(
        optimizer=optim,
        lr_scheduler=lr_scheduler,
        max_epochs=configuration["max_epochs"],
        iterations=configuration["iterations"],
        device=configuration["device"],
        sample_loader=dataloader,
        num_support_tr=configuration["num_support_tr"])

    options = extend_options_from_config(configuration=configuration,
                                         options=options)

    if configuration["validate"]:

        num_support_validation = configuration["num_support_validation"]
        num_query_validation = configuration["num_query_validation"]
        num_samples_validation = num_query_validation + num_support_validation

        print(f"{INFO} Number of samples validation {num_samples_validation}")

        validation_dataset = TUFDataset(filename=Path(
            configuration["validate_dataset"]),
                                        dataset_type="validate",
                                        classes=configuration["classes"])

        print(f"{INFO} Validation dataset size {len(validation_dataset)} ")

        val_sampler = BatchSampler(labels=validation_dataset.labels,
                                   classes_per_it=len(
                                       configuration["classes"]),
                                   num_samples=num_samples_validation,
                                   iterations=configuration["iterations"],
                                   mode="validate")

        validation_dataloader = torch.utils.data.DataLoader(
            validation_dataset, batch_sampler=val_sampler)
        options["validation_dataloader"] = validation_dataloader
        options["num_support_validation"] = configuration[
            "num_support_validation"]

    # train the model
    engine = TrainEngine(model=model)
    engine.train(options=options)

    engine_state = engine.state

    x = [epoch for epoch in range(configuration["max_epochs"])]

    train_loss = engine_state["average_train_loss"]
    validation_loss = engine_state["average_validation_loss"]

    plt.plot(x, train_loss, 'r*', label="Train loss")
    plt.plot(x, validation_loss, 'bo', label="Validation loss")
    plt.xlabel("Epoch")
    plt.ylabel("Average Loss")
    plt.legend(loc="upper right")
    plt.title(
        "Train vs Validation loss. $\eta=${0}, Iterations/epoch {1}".format(
            configuration["optimizer"]["lr"], configuration["iterations"]))
    plt.savefig(
        Path(configuration["save_model_path"] + "/" +
             "train_validation_loss.png"))
    plt.close()

    train_acc = engine_state["average_train_acc"]
    validation_acc = engine_state["average_validation_acc"]

    plt.plot(x, train_acc, 'r*', label="Train accuracy")
    plt.plot(x, validation_acc, 'bo', label="Validation accuracy")
    plt.xlabel("Epoch")
    plt.ylabel("Average Accuracy")
    plt.legend(loc="upper right")
    plt.title("Train vs Validation accuracy. $\eta=${0}, Iterations/epoch {1}".
              format(configuration["optimizer"]["lr"],
                     configuration["iterations"]))
    plt.savefig(
        Path(configuration["save_model_path"] + "/" +
             "train_validation_accuracy.png"))
コード例 #11
0
ファイル: trainvisdom.py プロジェクト: MrXin94/faceDet_inCar
                            list_file=label_path,
                            lmdb_path=lmdb_path,
                            train=True,
                            transform=[transforms.ToTensor()],
                            multi_scale=multi_scale)
if not multi_scale:
    train_loader = DataLoader(train_dataset,
                              batch_size=batch_size,
                              shuffle=True,
                              pin_memory=True,
                              num_workers=12)
else:
    train_loader = DataLoader(train_dataset,
                              batch_sampler=BatchSampler(
                                  RandomSampler(train_dataset),
                                  batch_size,
                                  True,
                                  multiscale_step=1,
                                  img_sizes=list(range(640, 1024 + 1, 128))),
                              pin_memory=True,
                              num_workers=12)
print('the dataset has %d images' % (len(train_dataset)))
print('the batch_size is %d' % (batch_size))

num_iter = 0
# vis = visdom.Visdom()
# win = vis.line(Y=np.array([0]), X=np.array([0]))
# win_lr = vis.line(Y=np.array([learning_rate]),X=np.array([0]))
net.train()

loss_file = './total_loss.txt'
f_write = open(loss_file, 'w')
コード例 #12
0
def train():
    ## setup
    torch.multiprocessing.set_sharing_strategy('file_system')
    if not os.path.exists(save_path): os.makedirs(save_path)
        

    ## model and loss
    logger.info('setting up backbone model and loss')
    if model == 'vggm':
        logger.info('model select vggm')
        net = vggm(num_class = args.num_class).cuda()
    else:
        logger.info('model select resnet50')
        net = EmbedNetwork(num_class = args.num_class).cuda()
    if(args.resume != ''):
        net.load_state_dict(torch.load(args.resume))
        logger.info('fine-turn from {}'.format(args.resume))
    net = nn.DataParallel(net)
    triplet_loss = TripletLoss(margin = None).cuda() # no margin means soft-margin
    
    softmax_criterion = torch.nn.CrossEntropyLoss()

    ## optimizer
    logger.info('creating optimizer')
    optim = AdamOptimWrapper(net.parameters(), lr = args.learning_rate, wd = 0, t0 = args.decay_start_iteration, t1 = args.train_iterations)

    ## dataloader
    selector = BatchHardTripletSelector()
    
    ds = VehicleID(img_dir, img_list, img_size = 256, is_train = True)
    logger.info('dataset OK')  
    sampler = BatchSampler(ds, args.batch_p, args.batch_k)
    dl = DataLoader(ds, batch_sampler = sampler, num_workers = 4)
    diter = iter(dl)

    ## train
    logger.info('start training ...')
    loss_avg = []
    loss_soft_avg = []
    count = 0
    t_start = time.time()
    while True:
        try:
            imgs, lbs, _, _ = next(diter)
        except StopIteration:
            diter = iter(dl)
            imgs, lbs, _, _ = next(diter)

        net.train()
        imgs = imgs.cuda()
        lbs = lbs.cuda()
        if model == 'vggm':
            embds, fc = net(imgs)
        else:
            embds, fc = net(imgs)
        anchor, positives, negatives = selector(embds, lbs)

        loss = triplet_loss(anchor, positives, negatives)
        loss_softmax = softmax_criterion(fc,lbs)
        
        loss_all = 0.5 * loss_softmax + loss
        optim.zero_grad()
        loss_all.backward()
        optim.step()

        loss_avg.append(loss.detach().cpu().numpy())
        loss_soft_avg.append(loss_softmax.detach().cpu().numpy())
        if count % 20 == 0 and count != 0:
            loss_avg = sum(loss_avg) / len(loss_avg)
            loss_soft_avg = sum(loss_soft_avg) / len(loss_soft_avg)
            t_end = time.time()
            time_interval = t_end - t_start
            logger.info('iter: {}, trip_loss: {:4f}, soft_loss: {:4f}, lr: {:4f}, time: {:3f}'.format(count, loss_avg, loss_soft_avg, optim.lr, time_interval))
            loss_avg = []
            loss_soft_avg = []
            t_start = t_end
            
        if count % args.checkpoint_frequency ==0 and count != 0:
            logger.info('saving trained model')
            name = save_path + str(count) + model_name
            ver = 2
            while(os.path.exists(name)):
                logger.info('model has exists')
                name = name + '_v'+str(ver)
                ver = ver + 1
            torch.save(net.module.state_dict(), name)

        count += 1
        if count == args.train_iterations: break

    ## dump model
    logger.info('saving trained model')
    name = save_path + str(count) + '_'+ model_name
    ver = 2
    while(os.path.exists(name)):
        logger.info('model has exists')
        name = name + '_v'+str(ver)
        ver = ver + 1
    torch.save(net.module.state_dict(), name)
    logger.info('everything finished')
コード例 #13
0
def train():
    ## setup
    torch.multiprocessing.set_sharing_strategy('file_system')
    if not os.path.exists('./res'): os.makedirs('./res')

    ## model and loss
    logger.info('setting up backbone model and loss')
    net = EmbedNetwork().cuda()
    net = nn.DataParallel(net)
    print(net)
    triplet_loss = TripletLoss(
        margin=0.3).cuda()  # no margin means soft-margin
    BNNeck = ClassBlock(2048, 1501).cuda()
    BNNeck = nn.DataParallel(BNNeck)

    ## optimizer
    logger.info('creating optimizer')
    optim = AdamOptimWrapper(net.parameters(),
                             lr=3e-4,
                             wd=0,
                             t0=15000,
                             t1=25000)

    ## dataloader
    selector = BatchHardTripletSelector()
    ds = Market1501(
        'E://graduation thesis//triplet-reid-pytorch-master//triplet-reid-pytorch-master//datasets//Market-1501-v15.09.15//Market-1501-v15.09.15//bounding_box_train',
        is_train=True)
    sampler = BatchSampler(ds, 9, 4)
    dl = DataLoader(ds, batch_sampler=sampler, num_workers=0)
    diter = iter(dl)

    ## train
    logger.info('start training ...')
    loss_avg = []
    loss1_avg = []
    loss2_avg = []
    loss3_avg = []
    count = 0
    t_start = time.time()
    while True:
        try:
            imgs, lbs, _ = next(diter)
        except StopIteration:
            diter = iter(dl)
            imgs, lbs, _ = next(diter)

        #criterion = nn.CrossEntropyLoss().cuda()
        criterion = CrossEntropyLabelSmooth(num_classes=1501)
        center_criterion = CenterLoss(num_classes=1051,
                                      feat_dim=2048,
                                      use_gpu=True)

        net.train()
        imgs = imgs.cuda()
        lbs = lbs.cuda()

        # for name in net.state_dict():
        #     print("net parameters:", name)

        optim.zero_grad()

        embds = net(imgs)
        anchor, positives, negatives = selector(embds, lbs)

        BNNeck.train()
        # for name in BNNeck.state_dict():
        #     print("BNNeck parameters:", name)

        #print(BNNeck)

        classifier = []
        classifier += [nn.Linear(2048, 1501)]
        classifier = nn.Sequential(*classifier)
        classifier.apply(weights_init_classifier)
        classifier = classifier.cuda()

        x = torch.squeeze(embds)
        BNNeck1 = BNNeck(x)
        #classifier = torch.autograd.Variable(classifier)
        classifier = classifier(BNNeck1)

        loss1 = triplet_loss(anchor, positives, negatives)
        loss2 = criterion(classifier, lbs)
        loss3 = center_criterion(embds, lbs)
        loss = loss1 + loss2 + 0.0005 * loss3

        loss.backward()
        optim.step()

        loss_avg.append(loss.detach().cpu().numpy())
        loss1_avg.append(loss1.detach().cpu().numpy())
        loss2_avg.append(loss2.detach().cpu().numpy())
        loss3_avg.append(loss3.detach().cpu().numpy())
        #loss1_avg.append(loss1.detach().cpu().numpy())
        if count % 20 == 0 and count != 0:
            loss_avg = sum(loss_avg) / len(loss_avg)
            loss1_avg = sum(loss1_avg) / len(loss1_avg)
            loss2_avg = sum(loss2_avg) / len(loss2_avg)
            loss3_avg = sum(loss3_avg) / len(loss3_avg)
            t_end = time.time()
            time_interval = t_end - t_start
            logger.info(
                'iter: {}, loss1: {:4f}, loss2: {:4f}, loss3:{:4f}, loss: {:4f}, lr: {:4f}, time: {:3f}'
                .format(count, loss1_avg, loss2_avg, loss3_avg, loss_avg,
                        optim.lr, time_interval))
            loss_avg = []
            loss1_avg = []
            loss2_avg = []
            loss3_avg = []
            t_start = t_end

        count += 1
        if count == 25000: break

    ## dump model
    logger.info('saving trained model')
    torch.save(net.module.state_dict(), './res/model.pkl')
    torch.save(BNNeck.module.state_dict(), './res/BNNeck.pkl')

    logger.info('everything finished')
コード例 #14
0
def train():
    ## setup
    torch.multiprocessing.set_sharing_strategy('file_system')
    if not os.path.exists('./res'): os.makedirs('./res')

    ## model and loss
    logger.info('setting up backbone model and loss')
    net = EmbedNetwork().cuda()
    net = nn.DataParallel(net)
    triplet_loss = TripletLoss(
        margin=None).cuda()  # no margin means soft-margin

    ## optimizer
    logger.info('creating optimizer')
    optim = AdamOptimWrapper(net.parameters(),
                             lr=3e-4,
                             wd=0,
                             t0=15000,
                             t1=25000)

    ## dataloader
    selector = BatchHardTripletSelector()
    ds = Market1501('datasets/Market-1501-v15.09.15/bounding_box_train',
                    is_train=True)
    sampler = BatchSampler(ds, 18, 4)
    dl = DataLoader(ds, batch_sampler=sampler, num_workers=4)
    diter = iter(dl)

    ## train
    logger.info('start training ...')
    loss_avg = []
    count = 0
    t_start = time.time()
    while True:
        try:
            imgs, lbs, _ = next(diter)
        except StopIteration:
            diter = iter(dl)
            imgs, lbs, _ = next(diter)

        net.train()
        imgs = imgs.cuda()
        lbs = lbs.cuda()
        embds = net(imgs)
        anchor, positives, negatives = selector(embds, lbs)

        loss = triplet_loss(anchor, positives, negatives)
        optim.zero_grad()
        loss.backward()
        optim.step()

        loss_avg.append(loss.detach().cpu().numpy())
        if count % 20 == 0 and count != 0:
            loss_avg = sum(loss_avg) / len(loss_avg)
            t_end = time.time()
            time_interval = t_end - t_start
            logger.info('iter: {}, loss: {:4f}, lr: {:4f}, time: {:3f}'.format(
                count, loss_avg, optim.lr, time_interval))
            loss_avg = []
            t_start = t_end

        count += 1
        if count == 25000: break

    ## dump model
    logger.info('saving trained model')
    torch.save(net.module.state_dict(), './res/model.pkl')

    logger.info('everything finished')
コード例 #15
0
lr = 0.001
lr_step = (num_epochs) // 5
lr_gamma = 0.5

# paths
csv_path = '../hw4_data/train.csv'
data_dir = '../hw4_data/train'
val_csv_path = '../hw4_data/val.csv'
val_data_dir = '../hw4_data/val'
model_path = './models/best_model_M1_q3.pth'
generator_path = './models/best_generator_M1_q3.pth'

# In[27]:

train_dataset = MiniDataset(csv_path, data_dir)
train_sampler = BatchSampler('train', train_dataset.labels, N_way,
                             sample_per_class, episodes)
train_dataloader = DataLoader(train_dataset,
                              batch_size=batch_size,
                              sampler=train_sampler)

# In[28]:

testcase_csv = '../hw4_data/val_testcase.csv'
test_dataset = MiniDataset(val_csv_path, val_data_dir)

# fix random seeds for reproducibility
SEED = 123
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
random.seed(SEED)
コード例 #16
0
class LogisticRegression(Predictor):
    def __init__(self):
        super().__init__()
        self.weights = None
        self.bias = None
        self.batch_sampler = None
        self.metrics_tracker = MetricsTracker()

    def train(self,
              train_x,
              train_y,
              nb_epochs=1000,
              batch_size=1000,
              lr=0.1,
              lambd=0.000):
        self.weights = np.zeros(shape=(train_x.shape[0], 1))
        self.bias = 0
        self.batch_sampler = BatchSampler(batch_size)
        costs = []
        accuracies = []
        for epoch in range(nb_epochs):
            lr_decay = lr * (nb_epochs - epoch) / nb_epochs

            batch_x, batch_y = self.batch_sampler.sample(train_x, train_y)
            print("Shape batch_x: " + str(batch_x.shape))
            print("Shape train_y: " + str(batch_y.shape))

            y_hat = self.predict(batch_x)
            cost = self.__compute_cost(y_hat, batch_y, lambd)
            grad_w, grad_b = self.__compute_grad(batch_x, y_hat, batch_y,
                                                 lambd)
            self.weights = self.weights - lr_decay * grad_w
            self.bias = self.bias - lr_decay * grad_b

            if epoch % 100 == 0:
                prediction = self.predict(train_x) > 0.5
                accuracy = self.metrics_tracker.accuracy(train_y, prediction)
                print("Epoch: " + str(epoch))
                print("Cost: " + str(cost))
                print("Gradients (W, b): " + str(grad_w) + ", " + str(grad_b))
                print("Weights: " + str(self.weights) + ", " + str(self.bias))
                print("Accuracy: " + str(accuracy))

                costs.append(cost)
                accuracies.append(accuracy)
        return accuracies, costs

    def predict(self, X):
        a = np.dot(self.weights.T, X) + self.bias
        return self.__sigmoid(a)

    def __compute_cost(self, y_hat, y, lambd):
        eps = 10e-5
        return -np.mean(y * np.log(y_hat + eps) +
                        (1 - y) * np.log(1 - y_hat + eps)
                        ) + 0.5 * lambd * np.sum(self.weights**2)

    def __compute_grad(self, X, y_hat, Y, lambd):
        m = X.shape[1]
        grad_w = (1 / m) * np.dot(X, (y_hat - Y).T) + lambd * self.weights
        grad_b = (1 / m) * np.sum(y_hat - Y)

        print("Shape grad_w: " + str(grad_w.shape))
        print("Shape grad_b: " + str(grad_b.shape))

        assert (grad_w.shape == self.weights.shape)
        return grad_w, grad_b

    def __sigmoid(self, a):
        return 1 / (1 + np.exp(-a))
コード例 #17
0
class MLP(Predictor):
    def __init__(self, n_x, n_hidden_layers, neurons_per_layer, n_output, activations):
        super().__init__()
        self.initialize_parameters(n_x, n_hidden_layers, neurons_per_layer, n_output)

        self.batch_sampler = None
        self.activations = activations
        self.act_dict = {"sigmoid": self.__sigmoid, "relu": self.__relu, "linear": self.__linear}
        self.metrics_tracker = MetricsTracker()
        self.n_layers = n_hidden_layers + 2

        assert(len(activations) == n_hidden_layers + 1)

    def train(self, train_x, train_y, nb_epochs = 1000, batch_size = 1000, lr = 0.1):
        self.batch_sampler = BatchSampler(batch_size)
        costs = []
        accuracies = []

        for epoch in range(nb_epochs):
            lr_decay = lr * (nb_epochs - epoch)/nb_epochs

            batch_x, batch_y = self.batch_sampler.sample(train_x, train_y)
            print("Shape batch_x: " + str(batch_x.shape))
            print("Shape train_y: " + str(batch_y.shape))

            cost, y_hat = self.__forward_prop(batch_x, batch_y)

            grad = self.__backward_prop(batch_x, batch_y, y_hat)

            self.learning_update(grad, lr)

            if epoch%100 == 0:
                prediction = self.predict(train_x) > 0.5
                accuracy = self.metrics_tracker.accuracy(train_y, prediction)
                print("Epoch: " + str(epoch))
                print("Cost: " + str(cost))
                print("Gradients (W, b): " + str(grad_w)+ ", " + str(grad_b))
                print("Weights: " + str(self.weights) + ", " + str(self.bias))
                print("Accuracy: " + str(accuracy))

                costs.append(cost)
                accuracies.append(accuracy)
        return accuracies, costs
    
    def initialize_parameters(self, n_x, n_hidden_layers, neurons_per_layer, n_output):
        assert(len(neurons_per_layer) == n_hidden_layers + 1)
        W0 = np.random.rand(shape = (neurons_per_layer[0], n_x))
        b0 = np.zeros(shape = (neurons_per_layer[0], 1))
        self.weights = {"W0": W0, "b0": b0}
        
        for i in range(n_hidden_layers):
            Wi = np.random.rand(shape = (neurons_per_layer[i + 1], neurons_per_layer[i]))
            bi = np.zeros(shape = ((neurons_per_layer[i + 1], 1)))
            self.weights["W" + str(i+1)] = Wi
            self.weights["b" + str(i+1)] = bi
        
        W_output = np.random.rand(shape = (n_output, neurons_per_layer[n_hidden_layers - 1]))
        b_output = np.zeros(shape = ((n_output, 1)))
        self.weights["W" + str(n_hidden_layers+1)] = W_output
        self.weights["b" + str(n_hidden_layers+1)] = b_output

    def __sigmoid(self, x):
        return 1 / (1 + np.exp(-x))

    def __relu(self, x):
        return np.max(0, x, axis=1)

    def __linear(self, x):
        return x

    def __forward_prop(batch_x, batch_y):
        A_last = batch_x
        for i in range(self.n_layers):
            Wi = self.weights["W" + str(i)]
            bi = self.weights["b" + str(i)]
            Z = Wi * A_last + bi
            A_output = self.act_dict[self.activations[i]]
            A_last = A_output
        m = batch_x.shape[1]
        eps = 10e-5
        cost = (-1/m) * np.sum(Y * np.log(A_output + eps) + (1 - Y)*np.log(1 - A_output + eps))

        assert(cost.shape == ())
        assert(A_output.shape == (1, m))

        cost = np.squeeze(cost) 

        return cost, A_output

    def __backward_prop(batch_x, batch_y, y_hat):


    

    def predict(self, X):
        a = np.dot(self.weights.T, X) + self.bias
        return self.__sigmoid(a)

    def __compute_cost(self, y_hat, y, lambd):
        eps = 10e-5
        return - np.mean(y * np.log(y_hat + eps) + (1-y) * np.log(1 - y_hat + eps)) + 0.5*lambd*np.sum(self.weights**2)
    
    def __compute_grad(self, X, y_hat, Y, lambd):
        m = X.shape[1]
        grad_w = (1/m) * np.dot(X, (y_hat - Y).T) + lambd * self.weights
        grad_b = (1/m) * np.sum(y_hat - Y)

        print("Shape grad_w: " + str(grad_w.shape))
        print("Shape grad_b: " + str(grad_b.shape))

        assert(grad_w.shape == self.weights.shape)
        return grad_w, grad_b