columns = np.hsplit(dataset,9) xsample = np.hstack(columns[0:8]) ysample = columns[8] shape = xsample.shape print "xsample = ",xsample.shape print "ysample = ",ysample.shape # indexList = np.random.permutation(shape[0]) indexList = range(shape[0]) x_train = xsample[indexList[0:538]] y_train = ysample[indexList[0:538]] print "x_train.shape = ",x_train.shape print "y_train.shape = ",y_train.shape x_test = xsample[indexList[538:]] y_test = ysample[indexList[538:]] print "x_test.shape = ",x_test.shape print "y_test.shape = ",y_test.shape classifier = BayesClassifier() classifier.saveNeeded = False classifier.saveNeeded = 20 classifier.train(x_train,y_train) print "classifier train succefully ..." y_predict = classifier.predict(x_test) result = classifier.f_measure(y_predict,y_test) print "BayesClassifier result = ",result
xsample = np.float32(xsample) ysample = np.float32(ysample) shape = xsample.shape print "xsample = ", xsample.shape print "ysample = ", ysample.shape orders = ["precision", 'recall', 'accuracy', 'fmeasure'] number = 20 PRAFarray = np.zeros((number, 12)) for i in xrange(number): print "i = ", i indexList = np.random.permutation(shape[0]) x_train = xsample[indexList[:538]] y_train = ysample[indexList[:538]] classifier = BayesClassifier() classifier.saveNeeded = False classifier.sectionNumber = 30 classifier.train(x_train, y_train) x_train1 = classifier.transform_pmodel(x_train) x_train2 = np.hstack([x_train, x_train1]) print "shape = ", (x_train.shape, x_train1.shape, x_train2.shape) x_test = xsample[indexList[538:]] y_test = ysample[indexList[538:]] x_test1 = classifier.transform_pmodel(x_test) x_test2 = np.hstack([x_test, x_test1]) svm_params = dict(kernel_type=cv2.SVM_LINEAR, svm_type=cv2.SVM_C_SVC, C=3.67,
print "ysample = ",ysample.shape # indexList = np.random.permutation(shape[0]) indexList = range(shape[0]) x_train = xsample[indexList[0:538]] y_train = ysample[indexList[0:538]] print "x_train.shape = ",x_train.shape print "y_train.shape = ",y_train.shape x_test = xsample[indexList[538:]] y_test = ysample[indexList[538:]] print "x_test.shape = ",x_test.shape print "y_test.shape = ",y_test.shape myBayes = BayesClassifier() layers = np.array([8,15,1]) model = cv2.ANN_MLP() model.create(layers) params = dict( term_crit = (cv2.TERM_CRITERIA_COUNT, 3000, 0.01), train_method = cv2.ANN_MLP_TRAIN_PARAMS_BACKPROP, bp_dw_scale = 0.001, bp_moment_scale = 0.0 ) model.train(x_train,y_train,None,params = params) ret,resp = model.predict(x_test)
print "ysample = ", ysample.shape # indexList = np.random.permutation(shape[0]) indexList = range(shape[0]) x_train = xsample[indexList[0:538]] y_train = ysample[indexList[0:538]] print "x_train.shape = ", x_train.shape print "y_train.shape = ", y_train.shape x_test = xsample[indexList[538:]] y_test = ysample[indexList[538:]] print "x_test.shape = ", x_test.shape print "y_test.shape = ", y_test.shape classifier = BayesClassifier() classifier.saveNeeded = False classifier.sectionNumber = 32 classifier.train(x_train, y_train) print "classifier train succefully ..." y_predict = classifier.predict(x_test) # print "y_predict = ",y_predict print "y_predict = ", y_predict.shape accuracy = (y_test == y_predict) print "BayesClassifier accuracy = ", np.mean(accuracy) print "-" * 100 from sklearn.naive_bayes import BernoulliNB clf = BernoulliNB()
#!usr/bin/env/python # -*- coding: utf-8 -*- import numpy as np from bayesClassifier import BayesClassifier classifier = BayesClassifier() classifier.sectionNumber = 12 classifier.saveNeeded = False dataset = np.load('pima-indians.npy') columns = np.hsplit(dataset, 9) xsample = np.hstack(columns[0:8]) ysample = columns[8] shape = xsample.shape print "xsample = ", xsample.shape print "ysample = ", ysample.shape ysample = np.float32(ysample) indexList = np.random.permutation(shape[0]) # indexList = range(shape[0]) x_train = xsample[indexList[0:538]] y_train = ysample[indexList[0:538]] print "x_train.shape = ", x_train.shape print "y_train.shape = ", y_train.shape classifier.train(x_train, y_train) print "classifier train succefully ..." x_train = classifier.transform_pmodel(x_train) x_test = xsample[indexList[538:]]
#!usr/bin/env/python # -*- coding: utf-8 -*- import numpy as np from bayesClassifier import BayesClassifier classifier = BayesClassifier() classifier.sectionNumber = 12 classifier.saveNeeded = False dataset = np.load('pima-indians.npy') columns = np.hsplit(dataset,9) xsample = np.hstack(columns[0:8]) ysample = columns[8] shape = xsample.shape print "xsample = ",xsample.shape print "ysample = ",ysample.shape ysample = np.float32(ysample) indexList = np.random.permutation(shape[0]) # indexList = range(shape[0]) x_train = xsample[indexList[0:538]] y_train = ysample[indexList[0:538]] print "x_train.shape = ",x_train.shape print "y_train.shape = ",y_train.shape classifier.train(x_train,y_train) print "classifier train succefully ..." x_train = classifier.transform_pmodel(x_train) x_test = xsample[indexList[538:]]
# indexList = np.random.permutation(shape[0]) indexList = range(shape[0]) x_train = xsample[indexList[0:538]] y_train = ysample[indexList[0:538]] print "x_train.shape = ",x_train.shape print "y_train.shape = ",y_train.shape x_test = xsample[indexList[538:]] y_test = ysample[indexList[538:]] print "x_test.shape = ",x_test.shape print "y_test.shape = ",y_test.shape classifier = BayesClassifier() classifier.saveNeeded = False classifier.sectionNumber = 32 classifier.train(x_train,y_train) print "classifier train succefully ..." y_predict = classifier.predict(x_test) # print "y_predict = ",y_predict print "y_predict = ",y_predict.shape accuracy = (y_test == y_predict) print "BayesClassifier accuracy = ",np.mean(accuracy) print "-"*100
xsample = np.hstack(columns[0:8]) ysample = columns[8] shape = xsample.shape print "xsample = ", xsample.shape print "ysample = ", ysample.shape from sklearn.naive_bayes import GaussianNB orders = ["precision", 'recall', 'accuracy', 'fmeasure'] number = 20 PRAFarray = np.zeros((number, 12)) for i in xrange(number): indexList = np.random.permutation(shape[0]) x_train = xsample[indexList[:538]] y_train = ysample[indexList[:538]] classifier = BayesClassifier() classifier.saveNeeded = False classifier.sectionNumber = 40 classifier.train(x_train, y_train) x_train1 = classifier.transform_pmodel(x_train) x_train2 = np.hstack([x_train, x_train1]) print "shape = ", (x_train.shape, x_train1.shape, x_train2.shape) x_test = xsample[indexList[538:]] y_test = ysample[indexList[538:]] x_test1 = classifier.transform_pmodel(x_test) x_test2 = np.hstack([x_test, x_test1]) clf = GaussianNB().fit(x_train, y_train.ravel()) y_predict = clf.predict(x_test) result = classifier.f_measure(y_predict, y_test)
indexList = np.random.permutation(shape[0]) # indexList = range(shape[0]) x_train = xsample[indexList[0:538]] y_train = ysample[indexList[0:538]] print "x_train.shape = ",x_train.shape print "y_train.shape = ",y_train.shape x_test = xsample[indexList[538:]] y_test = ysample[indexList[538:]] print "x_test.shape = ",x_test.shape print "y_test.shape = ",y_test.shape classifier = BayesClassifier() classifier.saveNeeded = True classifier.sectionNumber = 12 classifier.train(x_train,y_train) print "classifier train succefully ..." y_predict = classifier.predict(x_test) # print "y_predict = ",y_predict print "y_predict = ",y_predict.shape accuracy = (y_test == y_predict) print "BayesClassifier accuracy = ",np.mean(accuracy) params = classifier.params ''' p = params['p0'] p0 = p['class0']
ysample = np.float32(ysample) shape = xsample.shape print "xsample = ",xsample.shape print "ysample = ",ysample.shape orders = ["precision",'recall','accuracy','fmeasure'] number = 20 PRAFarray = np.zeros((number,12)) for i in xrange(number): print "i = ",i indexList = np.random.permutation(shape[0]) x_train = xsample[indexList[:538]] y_train = ysample[indexList[:538]] classifier = BayesClassifier() classifier.saveNeeded = False classifier.sectionNumber = 39 classifier.train(x_train,y_train) x_train1 = classifier.transform_pmodel(x_train) x_train2 = np.hstack([x_train,x_train1]) # print "shape = ",(x_train.shape,x_train1.shape,x_train2.shape) x_test = xsample[indexList[538:]] y_test = ysample[indexList[538:]] x_test1 = classifier.transform_pmodel(x_test) x_test2 = np.hstack([x_test,x_test1]) bdt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=1), algorithm="SAMME",
print "ysample = ", ysample.shape # indexList = np.random.permutation(shape[0]) indexList = range(shape[0]) x_train = xsample[indexList[0:538]] y_train = ysample[indexList[0:538]] print "x_train.shape = ", x_train.shape print "y_train.shape = ", y_train.shape x_test = xsample[indexList[538:]] y_test = ysample[indexList[538:]] print "x_test.shape = ", x_test.shape print "y_test.shape = ", y_test.shape myBayes = BayesClassifier() layers = np.array([8, 15, 1]) model = cv2.ANN_MLP() model.create(layers) params = dict(term_crit=(cv2.TERM_CRITERIA_COUNT, 3000, 0.01), train_method=cv2.ANN_MLP_TRAIN_PARAMS_BACKPROP, bp_dw_scale=0.001, bp_moment_scale=0.0) model.train(x_train, y_train, None, params=params) ret, resp = model.predict(x_test)