def test_BO(dim, obj_fun, ftarget, max_FEs, lb, ub, logfile): sys.path.insert(0, '../') from bayes_optim import AnnealingBO, BO, ContinuousSpace from bayes_optim.Surrogate import GaussianProcess, trend space = ContinuousSpace(list(zip(lb, ub))) mean = trend.constant_trend(dim, beta=None) # equivalent to Ordinary Kriging thetaL = 1e-10 * (ub - lb) * np.ones(dim) thetaU = 10 * (ub - lb) * np.ones(dim) theta0 = np.random.rand(dim) * (thetaU - thetaL) + thetaL model = GaussianProcess(mean=mean, corr='matern', theta0=theta0, thetaL=thetaL, thetaU=thetaU, noise_estim=False, nugget=1e-6, optimizer='BFGS', wait_iter=5, random_start=5 * dim, likelihood='concentrated', eval_budget=100 * dim) return BO(search_space=space, obj_fun=obj_fun, model=model, DoE_size=dim * 5, max_FEs=max_FEs, verbose=False, n_point=1, minimize=True, ftarget=ftarget, logger=logfile)
def test_pickling2(): dim = 5 lb, ub = -1, 5 def fitness(x): x = np.asarray(x) return np.sum(x**2) space = ContinuousSpace([lb, ub]) * dim mean = trend.constant_trend(dim, beta=None) thetaL = 1e-10 * (ub - lb) * np.ones(dim) thetaU = 10 * (ub - lb) * np.ones(dim) theta0 = np.random.rand(dim) * (thetaU - thetaL) + thetaL model = GaussianProcess(mean=mean, corr='squared_exponential', theta0=theta0, thetaL=thetaL, thetaU=thetaU, nugget=0, noise_estim=False, optimizer='BFGS', wait_iter=3, random_start=dim, likelihood='concentrated', eval_budget=100 * dim) opt = BO(search_space=space, obj_fun=fitness, model=model, DoE_size=5, max_FEs=10, verbose=True, n_point=1, logger='log') opt.save('test') opt = BO.load('test') print(opt.run()) os.remove('test') os.remove('log')
def test_BO(dim, obj_fun, ftarget, max_FEs, lb, ub, logfile): sys.path.insert(0, "../") from bayes_optim import BO, AnnealingBO, RealSpace from bayes_optim.Surrogate import GaussianProcess, trend space = RealSpace([lb, ub]) * dim mean = trend.constant_trend(dim, beta=0) # equivalent to Ordinary Kriging thetaL = 1e-10 * (ub - lb) * np.ones(dim) thetaU = 10 * (ub - lb) * np.ones(dim) theta0 = np.random.rand(dim) * (thetaU - thetaL) + thetaL model = GaussianProcess( mean=mean, corr="matern", theta0=theta0, thetaL=thetaL, thetaU=thetaU, noise_estim=False, nugget=1e-6, optimizer="BFGS", wait_iter=5, random_start=5 * dim, likelihood="concentrated", eval_budget=100 * dim, ) return BO( search_space=space, obj_fun=obj_fun, model=model, DoE_size=dim * 5, max_FEs=max_FEs, verbose=False, n_point=1, minimize=True, ftarget=ftarget, logger=logfile, )
from bayes_optim import BO, ContinuousSpace from bayes_optim.Surrogate import GaussianProcess, trend np.random.seed(123) dim = 5 lb, ub = -1, 5 def fitness(x): x = np.asarray(x) return np.sum(x**2) space = ContinuousSpace([lb, ub]) * dim mean = trend.constant_trend(dim, beta=None) thetaL = 1e-10 * (ub - lb) * np.ones(dim) thetaU = 10 * (ub - lb) * np.ones(dim) theta0 = np.random.rand(dim) * (thetaU - thetaL) + thetaL model = GaussianProcess(theta0=theta0, thetaL=thetaL, thetaU=thetaU, nugget=0, noise_estim=False, optimizer='BFGS', wait_iter=3, random_start=dim, likelihood='concentrated', eval_budget=100 * dim)