コード例 #1
0
 def create_merged_bayesian_network_for_event(
     event,
     prefix,
     bayesian_network,
     assert_merge_definitions=False,
     logger=StdOutLogger(verbose=False)):
     merge_def_list = BayesianNetworkMergeUtils.create_merge_definition_list(
         event, prefix, merge_singleton_events=False)
     logger.log('Merging...', includeTimestamp=True)
     logger.set_carriage_reset(True)
     count = len(merge_def_list)
     for index, merge_def in enumerate(merge_def_list):
         logger.log("\rMerging '%s' (%i of %i)" %
                    (merge_def.get_merged_event(), index + 1, count),
                    includeTimestamp=True)
         merge_defs = DistributionEventMergeDefinitions(
             event.name,
             bayesian_network,
             allow_unspecified_events=True,
             assert_merge_definitions=assert_merge_definitions)
         merge_defs.set_merge_definitions([merge_def])
         bn_wrapper = BayesianNetworkWrapper(bayesian_network)
         bayesian_network = bn_wrapper.create_network_with_merged_events(
             merge_defs, bake=True)
     logger.set_carriage_reset(False)
     logger.log('Merging done!', includeTimestamp=True)
     return bayesian_network
コード例 #2
0
def test_comparisons_2__compare_structure(bayesian_network_1,
                                          bayesian_network_2):
    wrapper1 = BayesianNetworkWrapper(bayesian_network_1)
    wrapper2 = BayesianNetworkWrapper(bayesian_network_2)
    with pytest.raises(Exception) as e:
        assert wrapper1.assert_structure_equality(wrapper2)
    assert str(e.value) == 'Number of states not equal'
コード例 #3
0
 def merge_alleles(self, events=None, prefixes=None, assert_merge_definitions=False):
     d_event = None
     if events is None:
         events =  []
         events.append(self.get_event_from_nickname(Nicknames.v_choice.value))
         events.append(self.get_event_from_nickname(Nicknames.j_choice.value))
         d_event = self.get_event_from_nickname(Nicknames.d_gene.value)
         if d_event is not None: events.append(d_event)
     if prefixes is None:
         prefixes = []
         prefixes.append(Nicknames.v_choice.value + ':')
         prefixes.append(Nicknames.j_choice.value + ':')
         if d_event is not None: prefixes.append(Nicknames.d_gene.value + ':')
     pg_network = BayesianNetworkMergeUtils.create_merged_bayesian_network_for_events(events, prefixes,
                                                                     self._network_wrapper._network,
                                                                      assert_merge_definitions=assert_merge_definitions,
                                                                      logger=self._logger)
     self._network_wrapper = BayesianNetworkWrapper(pg_network)
コード例 #4
0
ファイル: tmp.py プロジェクト: ralfne/py_pygmalion
def create_truncated_network(template):
    template_wrapper = BayesianNetworkWrapper(template)
    out = pom.BayesianNetwork()
    v_state = template_wrapper.get_state(
        'GeneChoice_V_gene_Undefined_side_prio7_size147')
    #v_del_state = template_wrapper.get_state('Deletion_V_gene_Three_prime_prio5_size21')
    j_state = template_wrapper.get_state(
        'GeneChoice_J_gene_Undefined_side_prio7_size16')
    #j_del_state = template_wrapper.get_state('Deletion_J_gene_Five_prime_prio5_size23')
    d_state = template_wrapper.get_state(
        'GeneChoice_D_gene_Undefined_side_prio6_size3')
    out.add_states(v_state, j_state, d_state)
    #out.add_states(v_state, j_state, v_del_state, j_del_state, d_state)
    out.add_edge(v_state, j_state)
    #out.add_edge(v_state, v_del_state)
    #out.add_edge(j_state, j_del_state)
    out.add_edge(v_state, d_state)
    out.add_edge(j_state, d_state)
    out.bake()
    return out
コード例 #5
0
def test_marginals_7__merge_all_alleles(bayesian_network_3):
    wrapper = BayesianNetworkWrapper(bayesian_network_3)
    merge_def1 = EventMergeDefinition('V1')
    merge_def1.extend(['V1*01', 'V1*02'])
    merge_defs = DistributionEventMergeDefinitions(
        'v_gene',
        wrapper.get_network(),
        allow_unspecified_events=True,
        assert_merge_definitions=True)
    merge_defs.set_merge_definitions([merge_def1])
    merged_network = wrapper.create_network_with_merged_events(merge_defs)
    assert (merged_network is not None)
    wrapper = BayesianNetworkWrapper(merged_network)
    margs = wrapper.get_probabilities(
        statename=None, probability_type=ProbabilityType.Conditional)
    assert len(margs) == 7
コード例 #6
0
def test_marginals_5__merge_v_alleles(bayesian_network_1):
    wrapper = BayesianNetworkWrapper(bayesian_network_1)
    merge_def1 = EventMergeDefinition('V1')
    merge_def1.extend(['V1*01', 'V1*02', 'V1*03'])
    merge_defs = DistributionEventMergeDefinitions(
        'v_gene',
        bayesian_network_1,
        allow_unspecified_events=True,
        assert_merge_definitions=True)
    merge_defs.set_merge_definitions([merge_def1])
    merged_network = wrapper.create_network_with_merged_events(merge_defs)
    wrapper = BayesianNetworkWrapper(merged_network)
    margs = wrapper.get_probabilities(
        statename='v_gene', probability_type=ProbabilityType.Conditional)
    assert len(margs) == 2
    assert utilities.almost_equal(margs.iloc[0, 0], 0.6, 0.0001)
    assert utilities.almost_equal(margs.iloc[1, 0], 0.4, 0.0001)
コード例 #7
0
def test_marginals_4__merge_v_alleles(bayesian_network_1):
    wrapper = BayesianNetworkWrapper(bayesian_network_1)
    merge_def1 = EventMergeDefinition('V1')
    merge_def1.extend(['V1*01', 'V1*02', 'V1*03'])
    merge_defs = DistributionEventMergeDefinitions(
        'v_gene',
        bayesian_network_1,
        allow_unspecified_events=True,
        assert_merge_definitions=True)
    merge_defs.set_merge_definitions([merge_def1])
    merged_network = wrapper.create_network_with_merged_events(merge_defs)
    wrapper = BayesianNetworkWrapper(merged_network)
    margs = wrapper.get_probabilities(
        statename=None, probability_type=ProbabilityType.Marginal)
    assert len(margs) == 2
    for key, value in margs.iteritems():
        tot = value.sum()
        assert utilities.almost_equal(tot, 1.0, 0.0001)
コード例 #8
0
ファイル: tmp.py プロジェクト: ralfne/py_pygmalion
out_marginals = 'C:/CiR/pTCR/IGOR_models/Unproductive_models/models_imgt_ref_dir_sep2019/HC/1365_TRB/1365_TRB_marginals.txt'
out_params = 'C:/CiR/pTCR/IGOR_models/Unproductive_models/models_imgt_ref_dir_sep2019/HC/1365_TRB/1365_TRB_params.txt'

gmw = GenModelWrapper(out_params, out_marginals, '1363_TRB_', StdOutLogger())
gmw.merge_alleles(assert_merge_definitions=True)
bn = gmw.get_bayesian_network_wrapper().get_network()

# truncate_bn = create_truncated_network(bn)
# truncate_bn_wrapper = BayesianNetworkWrapper(truncate_bn)
merge_defs = create_merg_defs(bn)
merged_bayesian_network = gmw.get_bayesian_network_wrapper(
).create_network_with_merged_events(merge_defs, bake=False)
merged_bayesian_network.bake()

bnwrapper = BayesianNetworkWrapper(merged_bayesian_network)
states = {}
n = gmw.get_eventname_for_nickname('v_choice')
state = bnwrapper.get_state(n)
states[n] = state

n = gmw.get_eventname_for_nickname('j_choice')
state = bnwrapper.get_state(n)
states[n] = state

n = gmw.get_eventname_for_nickname('d_gene')
state = bnwrapper.get_state(n)
states[n] = state

n = gmw.get_eventname_for_nickname('v_del3')
state = bnwrapper.get_state(n)
コード例 #9
0
def test_comparisons_1__compare_structure(bayesian_network_1):
    wrapper1 = BayesianNetworkWrapper(bayesian_network_1)
    wrapper2 = BayesianNetworkWrapper(bayesian_network_1)
    wrapper1.assert_structure_equality(wrapper2)
コード例 #10
0
def test_marginals_2__assert_marginals(bayesian_network_1):
    wrapper = BayesianNetworkWrapper(bayesian_network_1)
    margs = wrapper.get_probabilities('j_gene', ProbabilityType.Marginal)
    assert len(margs) == 3
コード例 #11
0
 def _init_network_wrapper(self):
     importer = BayesianNetworkImporter(self._logger)
     pg_network = importer.create_network_from_genmodelwrapper(self)
     pg_network.bake()
     wrapper = BayesianNetworkWrapper(pg_network)
     return wrapper
コード例 #12
0
class GenModelWrapper(object):
    _GENE_NAME_NICKNAMES = ['v_choice', 'j_choice']
    _MARGINALS_DF_COL_NAME = 'Marginal'

    def __init__(self, params_fn, marginals_fn, name='', logger=StdOutLogger(verbose=False)):
        self._logger = logger
        self._params_fn = params_fn
        self._marginal_fn = marginals_fn
        self._name = name
        self._genmodel = GenModel(params_fn, marginals_fn)
        self._logger.log('GenModelWrapper.GenModel class loaded (%s, %s)' % (params_fn, marginals_fn),
                         onlyIfVerbose=True)
        self._init_names_and_nicknames()
        self._insertion_compositions = self._init_insertion_compositions()
        self._insertion_lengths = self._init_insertion_lengths()
        self._network_wrapper = self._init_network_wrapper()
        self._logger.log('GenModelWrapper loaded', onlyIfVerbose=True)

    def _init_insertion_lengths(self):
        formatter = InsertionStatisticsFormatter(self)
        out = formatter.get_lengths_statistics()
        return out

    def get_insertion_lengths(self, nickname):
        out = self._insertion_lengths.get(nickname, None)
        return out

    def _init_insertion_compositions(self):
        calculator = SteadyStateCalculator(self._genmodel.marginals)
        calculator.calculate_for_key(Nicknames.vj_dinucl.value)
        calculator.calculate_for_key(Nicknames.vd_dinucl.value)
        calculator.calculate_for_key(Nicknames.dj_dinucl.value)
        out = calculator.get_matrices()
        return out

    def get_insertion_composition(self, nickname):
        out = self._insertion_compositions.get(nickname, None)
        return out

    def _init_network_wrapper(self):
        importer = BayesianNetworkImporter(self._logger)
        pg_network = importer.create_network_from_genmodelwrapper(self)
        pg_network.bake()
        wrapper = BayesianNetworkWrapper(pg_network)
        return wrapper

    def merge_alleles(self, events=None, prefixes=None, assert_merge_definitions=False):
        d_event = None
        if events is None:
            events =  []
            events.append(self.get_event_from_nickname(Nicknames.v_choice.value))
            events.append(self.get_event_from_nickname(Nicknames.j_choice.value))
            d_event = self.get_event_from_nickname(Nicknames.d_gene.value)
            if d_event is not None: events.append(d_event)
        if prefixes is None:
            prefixes = []
            prefixes.append(Nicknames.v_choice.value + ':')
            prefixes.append(Nicknames.j_choice.value + ':')
            if d_event is not None: prefixes.append(Nicknames.d_gene.value + ':')
        pg_network = BayesianNetworkMergeUtils.create_merged_bayesian_network_for_events(events, prefixes,
                                                                        self._network_wrapper._network,
                                                                         assert_merge_definitions=assert_merge_definitions,
                                                                         logger=self._logger)
        self._network_wrapper = BayesianNetworkWrapper(pg_network)

    def _init_names_and_nicknames(self):
        self._names_for_nicknames = {}
        self._nicknames_for_names = {}
        for event in self._genmodel.events:
            self._names_for_nicknames[event.nickname] = event.name
            self._nicknames_for_names[event.name] = event.nickname

    def __str__(self):
        return self._name

    def get_GenModel(self):
        return self._genmodel

    def get_bayesian_network_wrapper(self):
        return self._network_wrapper

    def get_name(self):
        return self._name

    def set_name(self, name):
        self._name = name

    def get_eventname_for_nickname(self, nickname):
        return self._names_for_nicknames.get(nickname, None)

    def get_event_from_name(self, name):
        for event in self._genmodel.events:
            if event.name == name: return event
        return None

    def get_event_from_nickname(self, nickname):
        for event in self._genmodel.events:
            if event.nickname == nickname: return event
        return None

    def get_bayesian_network_wrapper(self):
        return self._network_wrapper

    def _get_v_gene_marginal_from_primitives(self, v_gene_name):
        nickname = str(Nicknames.v_choice.value)
        event = self.get_event_from_nickname(nickname)
        index = -1
        for realization in event.realizations:
            if v_gene_name == realization.name:
                index = realization.index
                break
        margs = self._genmodel.marginals[0].get(nickname)
        out = margs[index]
        return out

    def assert_bayesian_network_structure_equality(self, gen_model_wrapper):
        try:
            self._network_wrapper.assert_structure_equality(gen_model_wrapper.get_bayesian_network_wrapper())
        except AssertionError as error:
            id = self._name + 'vs. ' + gen_model_wrapper.get_name() + ': '
            raise AssertionError(id + str(error))