コード例 #1
0
def main():
    """See README for instructions on calling aggregate.
    """
    description = "Aggregate study results across functions and optimizers"
    args = parse_args(agg_parser(description))

    logger.setLevel(logging.INFO)  # Note this is the module-wide logger
    if args[CmdArgs.verbose]:
        logger.addHandler(logging.StreamHandler())

    # Get list of UUIDs
    uuid_list = XRSerializer.get_uuids(args[CmdArgs.db_root], db=args[CmdArgs.db], key=cc.EVAL)
    uuid_list_ = XRSerializer.get_uuids(args[CmdArgs.db_root], db=args[CmdArgs.db], key=cc.TIME)
    assert uuid_list == uuid_list_, "UUID list does not match between time and eval results"
    uuid_list_ = XRSerializer.get_uuids(args[CmdArgs.db_root], db=args[CmdArgs.db], key=cc.SUGGEST_LOG)
    assert uuid_list == uuid_list_, "UUID list does not match between suggest log and eval results"

    # Get iterator of all experiment data dumps, load in and process, and concat
    data_G = load_experiments(uuid_list, args[CmdArgs.db_root], args[CmdArgs.db])
    all_perf, all_time, all_suggest, all_sigs = concat_experiments(data_G, ravel=args[CmdArgs.ravel])

    # Check the concat signatures make are coherent
    sig_errs, signatures_median = analyze_signatures(all_sigs)
    logger.info("Signature errors:\n%s" % sig_errs.to_string())
    print(json.dumps({"exp-agg sig errors": sig_errs.T.to_dict()}))

    # Dump and save it all out
    logger.info("saving")
    meta = {"args": serializable_dict(args), "signature": signatures_median}
    XRSerializer.save_derived(all_perf, meta, args[CmdArgs.db_root], db=args[CmdArgs.db], key=EVAL_RESULTS)
    XRSerializer.save_derived(all_time, meta, args[CmdArgs.db_root], db=args[CmdArgs.db], key=TIME_RESULTS)
    for test_case, ds in all_suggest.items():
        XRSerializer.save_derived(ds, meta, args[CmdArgs.db_root], db=args[CmdArgs.db], key=test_case)

    logger.info("done")
コード例 #2
0
def dry_run(args, opt_file_lookup, run_uuid, fp, random=np_random):
    """Write to buffer description of commands for running all experiments.

    This function is almost pure by writing to a buffer, but it could be switched to a generator.

    Parameters
    ----------
    args : dict(CmdArgs, [int, str])
        Arguments of options to pass to the experiments being launched. The keys corresponds to the same arguments
        passed to this program.
    opt_file_lookup : dict(str, str)
        Mapping from method name to filename containing wrapper class for the method.
    run_uuid : uuid.UUID
        UUID for this launcher run. Needed to generate different experiments UUIDs on each call. This function is
        deterministic provided the same `run_uuid`.
    fp : writable buffer
        File handle to write out sequence of commands to execute (broken into jobs on each line) to execute all the
        experiments (possibly each job in parallel).
    random : RandomState
        Random stream to use for reproducibility.
    """
    assert args[CmdArgs.n_jobs] > 0, "Must have non-zero jobs for dry run"

    # Taking in file pointer since then we can test without actual file. Could also build generator that returns lines
    # to write.
    manual_setup_info = XRSerializer.init_db_manual(args[CmdArgs.db_root],
                                                    db=args[CmdArgs.db],
                                                    keys=EXP_VARS)
    warnings.warn(manual_setup_info, UserWarning)

    # Get the commands
    dry_run_commands = {}
    G = gen_commands(args, opt_file_lookup, run_uuid)
    for (_, _, _, optimizer, _), full_cmd in G:
        cmd_str = shell_join(full_cmd)
        dry_run_commands.setdefault(optimizer, []).append(cmd_str)

    # Make sure we never have any empty jobs, which is a waste
    n_commands = sum(len(v) for v in dry_run_commands.values())
    n_jobs = min(args[CmdArgs.n_jobs], n_commands)

    # Would prob also work with pyrandom, but only tested np random so far
    subcommands = strat_split(list(dry_run_commands.values()),
                              n_jobs,
                              random=random)
    # Make sure have same commands overall, delete once we trust strat_split
    assert sorted(np.concatenate(subcommands)) == sorted(
        sum(list(dry_run_commands.values()), []))

    job_suffix = run_uuid.hex[:UUID_JOB_CHARS]

    # Include comments as reproducibility lines
    args_str = serializable_dict(args)
    fp.write("# running: %s\n" % str(args_str))
    fp.write("# cmd: %s\n" % cmd.cmd_str())
    for ii, ii_str in range_str(n_jobs):
        assert len(subcommands[ii]) > 0
        fp.write("job_%s_%s %s\n" %
                 (job_suffix, ii_str, " && ".join(subcommands[ii])))
コード例 #3
0
def main():
    """See README for instructions on calling launcher.
    """
    description = "Launch series of studies across functions and optimizers"
    args = cmd.parse_args(cmd.launcher_parser(description))

    logger.setLevel(logging.INFO)  # Note this is the module-wide logger
    if args[CmdArgs.verbose]:
        logger.addHandler(logging.StreamHandler())

    # Get optimizer settings, says which file to call for each optimizer
    settings = cmd.load_optimizer_settings(args[CmdArgs.optimizer_root])
    opt_file_lookup = {
        optimizer: wrapper_file
        for optimizer, (wrapper_file, _) in settings.items()
    }

    # Setup uuid
    if args[CmdArgs.uuid] is None:
        args[CmdArgs.uuid] = pyuuid.uuid4(
        ).hex  # debatable if uuid1 or uuid4 is better here
    else:
        warnings.warn(
            "User UUID supplied. This is only desired for debugging. Careless use could lead to study id conflicts.",
            UserWarning,
        )
    run_uuid = pyuuid.UUID(hex=args[CmdArgs.uuid])
    assert run_uuid.hex == args[CmdArgs.uuid]
    logger.info("Supply --uuid %s to reproduce this run." % run_uuid.hex)

    # Log all the options
    print("Launcher options (JSON):\n")
    print(json.dumps({"bayesmark-launch-args": cmd.serializable_dict(args)}))
    print("\n")

    # Set the master seed (derive from the uuid we just setup)
    pyrandom.seed(run_uuid.int)
    np.random.seed(random_seed(pyrandom))

    # Now run it, either to dry run file or executes sub-processes
    if args[CmdArgs.dry_run]:
        with absopen(args[CmdArgs.jobs_file], "w") as fp:
            dry_run(args, opt_file_lookup, run_uuid, fp)
    else:
        timeout = args[CmdArgs.timeout] if args[CmdArgs.timeout] > 0 else None
        real_run(args, opt_file_lookup, run_uuid, timeout)

    logger.info("done")
コード例 #4
0
def main():
    """See README for instructions on calling analysis.
    """
    description = "Analyze results from aggregated studies"
    args = parse_args(general_parser(description))

    logger.setLevel(logging.INFO)  # Note this is the module-wide logger
    if args[CmdArgs.verbose]:
        logger.addHandler(logging.StreamHandler())

    # Load in the eval data and sanity check
    perf_da, meta = XRSerializer.load_derived(args[CmdArgs.db_root], db=args[CmdArgs.db], key=cc.EVAL_RESULTS)
    perf_da = xru.only_dataarray(perf_da)
    logger.info("Meta data from source file: %s" % str(meta["args"]))

    # Check if there is baselines file, other make one
    if cc.BASELINE not in XRSerializer.get_derived_keys(args[CmdArgs.db_root], db=args[CmdArgs.db]):
        warnings.warn("Baselines not found. Need to construct baseline.")
        do_baseline(args)

    # Load in baseline scores data and sanity check (including compatibility with eval data)
    baseline_ds, meta_ref = XRSerializer.load_derived(args[CmdArgs.db_root], db=args[CmdArgs.db], key=cc.BASELINE)
    logger.info("baseline data from source ref file: %s" % str(meta_ref["args"]))

    # Check test case signatures match between eval data and baseline data
    sig_errs, signatures = analyze_signature_pair(meta["signature"], meta_ref["signature"])
    logger.info("Signature errors:\n%s" % sig_errs.to_string())

    # Do the actual computation
    agg_result, summary = compute_aggregates(perf_da, baseline_ds)

    final_score = summary[PERF_MED][{ITER: -1}]
    logger.info("median score @ %d:\n%s" % (summary.sizes[ITER], xru.da_to_string(final_score)))
    final_score = summary[PERF_MEAN][{ITER: -1}]
    logger.info("mean score @ %d:\n%s" % (summary.sizes[ITER], xru.da_to_string(final_score)))
    final_score = summary[NORMED_MEAN][{ITER: -1}]
    logger.info("normed mean score @ %d:\n%s" % (summary.sizes[ITER], xru.da_to_string(final_score)))

    # Now saving results
    meta = {"args": serializable_dict(args), "signature": signatures}
    XRSerializer.save_derived(agg_result, meta, args[CmdArgs.db_root], db=args[CmdArgs.db], key=cc.PERF_RESULTS)

    XRSerializer.save_derived(summary, meta, args[CmdArgs.db_root], db=args[CmdArgs.db], key=cc.MEAN_SCORE)

    logger.info("done")
コード例 #5
0
def experiment_main(opt_class, args=None):  # pragma: main
    """This is in effect the `main` routine for this experiment. However, it is called from the optimizer wrapper file
    so the class can be passed in. The optimizers are assumed to be outside the package, so the optimizer class can't
    be named from inside the main function without using hacky stuff like `eval`.
    """
    if args is None:
        description = "Run a study with one benchmark function and an optimizer"
        args = cmd.parse_args(cmd.experiment_parser(description))
    args[CmdArgs.opt_rev] = opt_class.get_version()

    run_uuid = uuid.UUID(args[CmdArgs.uuid])

    logging.captureWarnings(True)

    # Setup logging to both a file and stdout (if verbose is set to True)
    logger.setLevel(logging.INFO)  # Note this is the module-wide logger
    logfile = XRSerializer.logging_path(args[CmdArgs.db_root],
                                        args[CmdArgs.db], run_uuid)
    logger_file_handler = logging.FileHandler(logfile, mode="w")
    logger.addHandler(logger_file_handler)
    if args[CmdArgs.verbose]:
        logger.addHandler(logging.StreamHandler())

    warnings_logger = logging.getLogger("py.warnings")
    warnings_logger.addHandler(logger_file_handler)
    if args[CmdArgs.verbose]:
        warnings_logger.addHandler(logging.StreamHandler())

    logger.info("running: %s" % str(cmd.serializable_dict(args)))
    logger.info("cmd: %s" % cmd.cmd_str())

    assert (args[CmdArgs.metric]
            in METRICS_LOOKUP[get_problem_type(args[CmdArgs.data])]
            ), "reg/clf metrics can only be used on compatible dataset"

    # Setup random streams for computing the signature, must use same seed
    # across all runs to ensure signature is consistent. This seed is random:
    _setup_seeds(
        "7e9f2cabb0dd4f44bc10cf18e440b427")  # pragma: allowlist secret
    signature = get_objective_signature(args[CmdArgs.classifier],
                                        args[CmdArgs.data],
                                        args[CmdArgs.metric],
                                        data_root=args[CmdArgs.data_root])
    logger.info("computed signature: %s" % str(signature))

    opt_kwargs = load_optimizer_kwargs(args[CmdArgs.optimizer],
                                       args[CmdArgs.optimizer_root])

    # Setup the call back for intermediate logging
    if cc.BASELINE not in XRSerializer.get_derived_keys(args[CmdArgs.db_root],
                                                        db=args[CmdArgs.db]):
        warnings.warn("Baselines not found. Will not log intermediate scores.")
        callback = None
    else:
        test_case_str = SklearnModel.test_case_str(args[CmdArgs.classifier],
                                                   args[CmdArgs.data],
                                                   args[CmdArgs.metric])
        optimizer_str = str_join_safe(
            ARG_DELIM, (args[CmdArgs.optimizer], args[CmdArgs.opt_rev],
                        args[CmdArgs.rev]))

        baseline_ds, baselines_meta = XRSerializer.load_derived(
            args[CmdArgs.db_root], db=args[CmdArgs.db], key=cc.BASELINE)

        # Check the objective function signatures match in the baseline file
        sig_errs, _ = analyze_signature_pair({test_case_str: signature[1]},
                                             baselines_meta["signature"])
        logger.info("Signature errors:\n%s" % sig_errs.to_string())
        print(json.dumps({"exp sig errors": sig_errs.T.to_dict()}))

        def log_mean_score_json(evals, iters):
            assert evals.shape == (len(OBJECTIVE_NAMES), )
            assert not np.any(np.isnan(evals))

            log_msg = {
                cc.TEST_CASE: test_case_str,
                cc.METHOD: optimizer_str,
                cc.TRIAL: args[CmdArgs.uuid],
                cc.ITER: iters,
            }

            for idx, obj in enumerate(OBJECTIVE_NAMES):
                assert OBJECTIVE_NAMES[idx] == obj

                # Extract relevant rescaling info
                slice_ = {cc.TEST_CASE: test_case_str, OBJECTIVE: obj}
                best_opt = baseline_ds[cc.PERF_BEST].sel(
                    slice_, drop=True).values.item()
                base_clip_val = baseline_ds[cc.PERF_CLIP].sel(
                    slice_, drop=True).values.item()

                # Perform the same rescaling as found in experiment_analysis.compute_aggregates()
                score = linear_rescale(evals[idx],
                                       best_opt,
                                       base_clip_val,
                                       0.0,
                                       1.0,
                                       enforce_bounds=False)
                # Also, clip the score from below at -1 to limit max influence of single run on final average
                score = np.clip(score, -1.0, 1.0)
                score = score.item()  # Make easiest for logging in JSON
                assert isinstance(score, float)

                # Note: This is not the raw score but the rescaled one!
                log_msg[obj] = score
            log_msg = json.dumps(log_msg)
            print(log_msg, flush=True)
            # One second safety delay to protect against subprocess stdout getting lost
            sleep(1)

        callback = log_mean_score_json

    # Now set the seeds for the actual experiment
    _setup_seeds(args[CmdArgs.uuid])

    # Now do the experiment
    logger.info("starting sklearn study %s %s %s %s %d %d" % (
        args[CmdArgs.optimizer],
        args[CmdArgs.classifier],
        args[CmdArgs.data],
        args[CmdArgs.metric],
        args[CmdArgs.n_calls],
        args[CmdArgs.n_suggest],
    ))
    logger.info("with data root: %s" % args[CmdArgs.data_root])
    function_evals, timing, suggest_log = run_sklearn_study(
        opt_class,
        opt_kwargs,
        args[CmdArgs.classifier],
        args[CmdArgs.data],
        args[CmdArgs.metric],
        args[CmdArgs.n_calls],
        args[CmdArgs.n_suggest],
        data_root=args[CmdArgs.data_root],
        callback=callback,
    )

    # Curate results into clean dataframes
    eval_ds = build_eval_ds(function_evals, OBJECTIVE_NAMES)
    time_ds = build_timing_ds(*timing)
    suggest_ds = build_suggest_ds(suggest_log)

    # setup meta:
    meta = {"args": cmd.serializable_dict(args), "signature": signature}
    logger.info("saving meta data: %s" % str(meta))

    # Now the final IO to export the results
    logger.info("saving results")
    XRSerializer.save(eval_ds,
                      meta,
                      args[CmdArgs.db_root],
                      db=args[CmdArgs.db],
                      key=cc.EVAL,
                      uuid_=run_uuid)

    logger.info("saving timing")
    XRSerializer.save(time_ds,
                      meta,
                      args[CmdArgs.db_root],
                      db=args[CmdArgs.db],
                      key=cc.TIME,
                      uuid_=run_uuid)

    logger.info("saving suggest log")
    XRSerializer.save(suggest_ds,
                      meta,
                      args[CmdArgs.db_root],
                      db=args[CmdArgs.db],
                      key=cc.SUGGEST_LOG,
                      uuid_=run_uuid)

    logger.info("done")
コード例 #6
0
def experiment_main(opt_class, args=None):  # pragma: main
    """This is in effect the `main` routine for this experiment. However, it is called from the optimizer wrapper file
    so the class can be passed in. The optimizers are assumed to be outside the package, so the optimizer classs can't
    be named from inside the main function without using hacky stuff like `eval`.
    """
    if args is None:
        description = "Run a study with one benchmark function and an optimizer"
        args = cmd.parse_args(cmd.experiment_parser(description))
    args[CmdArgs.opt_rev] = opt_class.get_version()

    run_uuid = uuid.UUID(args[CmdArgs.uuid])

    logging.captureWarnings(True)

    # Setup logging to both a file and stdout (if verbose is set to True)
    logger.setLevel(logging.INFO)  # Note this is the module-wide logger
    logfile = XRSerializer.logging_path(args[CmdArgs.db_root],
                                        args[CmdArgs.db], run_uuid)
    logger_file_handler = logging.FileHandler(logfile, mode="w")
    logger.addHandler(logger_file_handler)
    if args[CmdArgs.verbose]:
        logger.addHandler(logging.StreamHandler())

    warnings_logger = logging.getLogger("py.warnings")
    warnings_logger.addHandler(logger_file_handler)
    if args[CmdArgs.verbose]:
        warnings_logger.addHandler(logging.StreamHandler())

    logger.info("running: %s" % str(cmd.serializable_dict(args)))
    logger.info("cmd: %s" % cmd.cmd_str())

    assert (args[CmdArgs.metric]
            in METRICS_LOOKUP[get_problem_type(args[CmdArgs.data])]
            ), "reg/clf metrics can only be used on compatible dataset"

    # Setup random streams for computing the signature, must use same seed
    # across all runs to ensure signature is consistent. This seed is random:
    _setup_seeds(
        "7e9f2cabb0dd4f44bc10cf18e440b427")  # pragma: allowlist secret
    signature = get_objective_signature(args[CmdArgs.classifier],
                                        args[CmdArgs.data],
                                        args[CmdArgs.metric],
                                        data_root=args[CmdArgs.data_root])
    logger.info("computed signature: %s" % str(signature))

    opt_kwargs = load_optimizer_kwargs(args[CmdArgs.optimizer],
                                       args[CmdArgs.optimizer_root])

    # Now set the seeds for the actual experiment
    _setup_seeds(args[CmdArgs.uuid])

    # Now do the experiment
    logger.info("starting sklearn study %s %s %s %s %d %d" % (
        args[CmdArgs.optimizer],
        args[CmdArgs.classifier],
        args[CmdArgs.data],
        args[CmdArgs.metric],
        args[CmdArgs.n_calls],
        args[CmdArgs.n_suggest],
    ))
    logger.info("with data root: %s" % args[CmdArgs.data_root])
    function_evals, timing = run_sklearn_study(
        opt_class,
        opt_kwargs,
        args[CmdArgs.classifier],
        args[CmdArgs.data],
        args[CmdArgs.metric],
        args[CmdArgs.n_calls],
        args[CmdArgs.n_suggest],
        data_root=args[CmdArgs.data_root],
    )

    # Curate results into clean dataframes
    eval_ds = build_eval_ds(function_evals)
    time_ds = build_timing_ds(*timing)

    # setup meta:
    meta = {"args": cmd.serializable_dict(args), "signature": signature}
    logger.info("saving meta data: %s" % str(meta))

    # Now the final IO to export the results
    logger.info("saving results")
    XRSerializer.save(eval_ds,
                      meta,
                      args[CmdArgs.db_root],
                      db=args[CmdArgs.db],
                      key=cc.EVAL,
                      uuid_=run_uuid)

    logger.info("saving timing")
    XRSerializer.save(time_ds,
                      meta,
                      args[CmdArgs.db_root],
                      db=args[CmdArgs.db],
                      key=cc.TIME,
                      uuid_=run_uuid)

    logger.info("done")