コード例 #1
0
ファイル: covariance.py プロジェクト: jtkim-lab/bayeso-1
def cov_main(str_cov, X, Xs, hyps, jitter=constants.JITTER_COV):
    assert isinstance(str_cov, str)
    assert isinstance(X, np.ndarray)
    assert isinstance(Xs, np.ndarray)
    assert isinstance(hyps, dict)
    assert isinstance(jitter, float)
    assert str_cov in constants.ALLOWED_GP_COV

    num_X = X.shape[0]
    num_Xs = Xs.shape[0]

    cov_ = np.zeros((num_X, num_Xs))
    if num_X == num_Xs:
        cov_ += np.eye(num_X) * jitter

    if str_cov == 'se' or str_cov == 'matern32' or str_cov == 'matern52':
        assert len(X.shape) == 2
        assert len(Xs.shape) == 2
        num_d_X = X.shape[1]
        num_d_Xs = Xs.shape[1]
        assert num_d_X == num_d_Xs

        hyps, is_valid = utils_covariance.validate_hyps_dict(
            hyps, str_cov, num_d_X)
        # TODO: ValueError is appropriate? We can just raise AssertionError in validate_hyps_dict. I am not sure.
        if not is_valid:
            raise ValueError('cov_main: invalid hyperparameters.')

        fun_cov = choose_fun_cov(str_cov)

        for ind_X in range(0, num_X):
            for ind_Xs in range(0, num_Xs):
                cov_[ind_X,
                     ind_Xs] += fun_cov(X[ind_X], Xs[ind_Xs],
                                        hyps['lengthscales'], hyps['signal'])
    elif str_cov in constants.ALLOWED_GP_COV_SET:
        list_str_cov = str_cov.split('_')
        str_cov = list_str_cov[1]
        assert len(X.shape) == 3
        assert len(Xs.shape) == 3
        num_d_X = X.shape[2]
        num_d_Xs = Xs.shape[2]
        assert num_d_X == num_d_Xs

        hyps, is_valid = utils_covariance.validate_hyps_dict(
            hyps, str_cov, num_d_X)
        # TODO: Please check this is_valid.
        if not is_valid:  # pragma: no cover
            raise ValueError('cov_main: invalid hyperparameters.')

        for ind_X in range(0, num_X):
            for ind_Xs in range(0, num_Xs):
                cov_[ind_X,
                     ind_Xs] += cov_set(str_cov, X[ind_X], Xs[ind_Xs],
                                        hyps['lengthscales'], hyps['signal'])
    else:
        raise NotImplementedError(
            'cov_main: allowed str_cov, but it is not implemented.')
    return cov_
コード例 #2
0
ファイル: covariance.py プロジェクト: cltk9090/bayeso
def cov_main(str_cov, X, Xs, hyps, same_X_Xs,
    jitter=constants.JITTER_COV
):
    """
    It computes kernel matrix over `X` and `Xs`, where `hyps` is given.

    :param str_cov: the name of covariance function.
    :type str_cov: str.
    :param X: one inputs. Shape: (n, d).
    :type X: numpy.ndarray
    :param Xs: another inputs. Shape: (m, d).
    :type Xs: numpy.ndarray
    :param hyps: dictionary of hyperparameters for covariance function.
    :type hyps: dict.
    :param same_X_Xs: flag for checking `X` and `Xs` are same.
    :type same_X_Xs: bool.
    :param jitter: jitter for diagonal entries.
    :type jitter: float, optional

    :returns: kernel matrix over `X` and `Xs`. Shape: (n, m).
    :rtype: numpy.ndarray

    :raises: AssertionError, ValueError

    """

    assert isinstance(str_cov, str)
    assert isinstance(X, np.ndarray)
    assert isinstance(Xs, np.ndarray)
    assert isinstance(hyps, dict)
    assert isinstance(same_X_Xs, bool)
    assert isinstance(jitter, float)
    assert str_cov in constants.ALLOWED_GP_COV

    num_X = X.shape[0]
    num_Xs = Xs.shape[0]

    cov_ = np.zeros((num_X, num_Xs))
    if same_X_Xs:
        assert num_X == num_Xs
        cov_ += np.eye(num_X) * jitter

    if str_cov == 'eq' or str_cov == 'se' or str_cov == 'matern32' or str_cov == 'matern52':
        assert len(X.shape) == 2
        assert len(Xs.shape) == 2
        num_d_X = X.shape[1]
        num_d_Xs = Xs.shape[1]
        assert num_d_X == num_d_Xs

        hyps, is_valid = utils_covariance.validate_hyps_dict(hyps, str_cov, num_d_X)
        # TODO: ValueError is appropriate? We can just raise AssertionError in validate_hyps_dict. I am not sure.
        if not is_valid:
            raise ValueError('cov_main: invalid hyperparameters.')

        fun_cov = choose_fun_cov(str_cov)
        cov_ += fun_cov(X, Xs, hyps['lengthscales'], hyps['signal'])
        assert cov_.shape == (num_X, num_Xs)
    elif str_cov in constants.ALLOWED_GP_COV_SET:
        list_str_cov = str_cov.split('_')
        str_cov = list_str_cov[1]
        assert len(X.shape) == 3
        assert len(Xs.shape) == 3
        num_d_X = X.shape[2]
        num_d_Xs = Xs.shape[2]
        assert num_d_X == num_d_Xs

        hyps, is_valid = utils_covariance.validate_hyps_dict(hyps, str_cov, num_d_X)
        if not is_valid:
            raise ValueError('cov_main: invalid hyperparameters.')

        if not same_X_Xs:
            for ind_X in range(0, num_X):
                for ind_Xs in range(0, num_Xs):
                    cov_[ind_X, ind_Xs] += cov_set(str_cov, X[ind_X], Xs[ind_Xs], hyps['lengthscales'], hyps['signal'])
        else:
            for ind_X in range(0, num_X):
                for ind_Xs in range(ind_X, num_Xs):
                    cov_[ind_X, ind_Xs] += cov_set(str_cov, X[ind_X], Xs[ind_Xs], hyps['lengthscales'], hyps['signal'])
                    if ind_X < ind_Xs:
                        cov_[ind_Xs, ind_X] = cov_[ind_X, ind_Xs]
    else:
        raise NotImplementedError('cov_main: allowed str_cov, but it is not implemented.')
    return cov_
コード例 #3
0
def test_validate_hyps_dict():
    num_dim = 2
    str_cov = 'matern32'
    cur_hyps = utils_covariance.get_hyps(str_cov, num_dim)
    cur_hyps.pop('noise')
    with pytest.raises(AssertionError) as error:
        _, is_valid = utils_covariance.validate_hyps_dict(
            cur_hyps, str_cov, num_dim)
        assert is_valid == True

    cur_hyps = utils_covariance.get_hyps(str_cov, num_dim)
    with pytest.raises(AssertionError) as error:
        _, is_valid = utils_covariance.validate_hyps_dict(
            cur_hyps, 'abc', num_dim)
        assert is_valid == True

    cur_hyps = utils_covariance.get_hyps(str_cov, num_dim)
    cur_hyps.pop('lengthscales')
    with pytest.raises(AssertionError) as error:
        _, is_valid = utils_covariance.validate_hyps_dict(
            cur_hyps, str_cov, num_dim)
        assert is_valid == True

    cur_hyps = utils_covariance.get_hyps(str_cov, num_dim)
    cur_hyps.pop('signal')
    with pytest.raises(AssertionError) as error:
        _, is_valid = utils_covariance.validate_hyps_dict(
            cur_hyps, str_cov, num_dim)
        assert is_valid == True

    cur_hyps = utils_covariance.get_hyps(str_cov, num_dim)
    cur_hyps['noise'] = 'abc'
    with pytest.raises(AssertionError) as error:
        _, is_valid = utils_covariance.validate_hyps_dict(
            cur_hyps, str_cov, num_dim)
        assert is_valid == True

    cur_hyps = utils_covariance.get_hyps(str_cov, num_dim)
    cur_hyps['noise'] = np.inf
    cur_hyps, is_valid = utils_covariance.validate_hyps_dict(
        cur_hyps, str_cov, num_dim)
    assert cur_hyps['noise'] == constants.BOUND_UPPER_GP_NOISE

    cur_hyps = utils_covariance.get_hyps(str_cov, num_dim)
    with pytest.raises(AssertionError) as error:
        _, is_valid = utils_covariance.validate_hyps_dict(
            cur_hyps, str_cov, 123)
        assert is_valid == True

    cur_hyps = utils_covariance.get_hyps(str_cov, num_dim)
    cur_hyps['lengthscales'] = 'abc'
    with pytest.raises(AssertionError) as error:
        _, is_valid = utils_covariance.validate_hyps_dict(
            cur_hyps, str_cov, num_dim)
        assert is_valid == True

    cur_hyps = utils_covariance.get_hyps(str_cov, num_dim)
    cur_hyps['signal'] = 'abc'
    with pytest.raises(AssertionError) as error:
        _, is_valid = utils_covariance.validate_hyps_dict(
            cur_hyps, str_cov, num_dim)
        assert is_valid == True
コード例 #4
0
def get_optimized_kernel(
        X_train: np.ndarray,
        Y_train: np.ndarray,
        prior_mu: constants.TYPING_UNION_CALLABLE_NONE,
        str_cov: str,
        str_optimizer_method: str = constants.STR_OPTIMIZER_METHOD_GP,
        str_modelselection_method: str = constants.STR_MODELSELECTION_METHOD,
        use_ard: bool = constants.USE_ARD,
        fix_noise: bool = constants.FIX_GP_NOISE,
        debug: bool = False) -> constants.TYPING_TUPLE_TWO_ARRAYS_DICT:
    """
    This function computes the kernel matrix optimized by optimization
    method specified, its inverse matrix, and the optimized hyperparameters.

    :param X_train: inputs. Shape: (n, d) or (n, m, d).
    :type X_train: numpy.ndarray
    :param Y_train: outputs. Shape: (n, 1).
    :type Y_train: numpy.ndarray
    :param prior_mu: prior mean function or None.
    :type prior_mu: callable or NoneType
    :param str_cov: the name of covariance function.
    :type str_cov: str.
    :param str_optimizer_method: the name of optimization method.
    :type str_optimizer_method: str., optional
    :param str_modelselection_method: the name of model selection method.
    :type str_modelselection_method: str., optional
    :param use_ard: flag for using automatic relevance determination.
    :type use_ard: bool., optional
    :param fix_noise: flag for fixing a noise.
    :type fix_noise: bool., optional
    :param debug: flag for printing log messages.
    :type debug: bool., optional

    :returns: a tuple of kernel matrix over `X_train`, kernel matrix
        inverse, and dictionary of hyperparameters.
    :rtype: tuple of (numpy.ndarray, numpy.ndarray, dict.)

    :raises: AssertionError, ValueError

    """

    # TODO: check to input same fix_noise to convert_hyps and restore_hyps
    utils_gp.validate_common_args(X_train, Y_train, str_cov, prior_mu, debug)
    assert isinstance(str_optimizer_method, str)
    assert isinstance(str_modelselection_method, str)
    assert isinstance(use_ard, bool)
    assert isinstance(fix_noise, bool)
    utils_covariance.check_str_cov('get_optimized_kernel', str_cov,
                                   X_train.shape)
    assert str_optimizer_method in constants.ALLOWED_OPTIMIZER_METHOD_GP
    assert str_modelselection_method in constants.ALLOWED_MODELSELECTION_METHOD
    use_gradient = bool(str_optimizer_method != 'Nelder-Mead')
    # TODO: Now, use_gradient is fixed as False.
    #    use_gradient = False

    time_start = time.time()

    if debug:
        logger.debug('str_optimizer_method: %s', str_optimizer_method)
        logger.debug('str_modelselection_method: %s',
                     str_modelselection_method)
        logger.debug('use_gradient: %s', use_gradient)

    prior_mu_train = utils_gp.get_prior_mu(prior_mu, X_train)
    if str_cov in constants.ALLOWED_COV_BASE:
        num_dim = X_train.shape[1]
    elif str_cov in constants.ALLOWED_COV_SET:
        num_dim = X_train.shape[2]
        use_gradient = False

    if str_modelselection_method == 'ml':
        neg_log_ml_ = lambda hyps: gp_likelihood.neg_log_ml(
            X_train,
            Y_train,
            hyps,
            str_cov,
            prior_mu_train,
            use_ard=use_ard,
            fix_noise=fix_noise,
            use_gradient=use_gradient,
            debug=debug)
    elif str_modelselection_method == 'loocv':
        # TODO: add use_ard.
        neg_log_ml_ = lambda hyps: gp_likelihood.neg_log_pseudo_l_loocv(
            X_train,
            Y_train,
            hyps,
            str_cov,
            prior_mu_train,
            fix_noise=fix_noise,
            debug=debug)
        use_gradient = False
    else:  # pragma: no cover
        raise ValueError(
            'get_optimized_kernel: missing conditions for str_modelselection_method.'
        )

    hyps_converted = utils_covariance.convert_hyps(str_cov,
                                                   utils_covariance.get_hyps(
                                                       str_cov,
                                                       num_dim,
                                                       use_ard=use_ard),
                                                   fix_noise=fix_noise)

    if str_optimizer_method in ['BFGS', 'SLSQP']:
        result_optimized = scipy.optimize.minimize(neg_log_ml_,
                                                   hyps_converted,
                                                   method=str_optimizer_method,
                                                   jac=use_gradient,
                                                   options={'disp': False})

        if debug:
            logger.debug('negative log marginal likelihood: %.6f',
                         result_optimized.fun)
            logger.debug('scipy message: %s', result_optimized.message)

        result_optimized = result_optimized.x
    elif str_optimizer_method in ['L-BFGS-B', 'SLSQP-Bounded']:
        if str_optimizer_method == 'SLSQP-Bounded':
            str_optimizer_method = 'SLSQP'

        bounds = utils_covariance.get_range_hyps(str_cov,
                                                 num_dim,
                                                 use_ard=use_ard,
                                                 fix_noise=fix_noise)
        result_optimized = scipy.optimize.minimize(neg_log_ml_,
                                                   hyps_converted,
                                                   method=str_optimizer_method,
                                                   bounds=bounds,
                                                   jac=use_gradient,
                                                   options={'disp': False})

        if debug:
            logger.debug('negative log marginal likelihood: %.6f',
                         result_optimized.fun)
            logger.debug('scipy message: %s', result_optimized.message)
        result_optimized = result_optimized.x
    elif str_optimizer_method in ['Nelder-Mead']:
        result_optimized = scipy.optimize.minimize(neg_log_ml_,
                                                   hyps_converted,
                                                   method=str_optimizer_method,
                                                   options={'disp': False})

        if debug:
            logger.debug('negative log marginal likelihood: %.6f',
                         result_optimized.fun)
            logger.debug('scipy message: %s', result_optimized.message)
        result_optimized = result_optimized.x
    else:  # pragma: no cover
        raise ValueError(
            'get_optimized_kernel: missing conditions for str_optimizer_method'
        )

    hyps = utils_covariance.restore_hyps(str_cov,
                                         result_optimized,
                                         use_ard=use_ard,
                                         fix_noise=fix_noise)

    hyps = utils_covariance.validate_hyps_dict(hyps, str_cov, num_dim)
    cov_X_X, inv_cov_X_X, _ = covariance.get_kernel_inverse(
        X_train, hyps, str_cov, fix_noise=fix_noise, debug=debug)
    time_end = time.time()

    if debug:
        logger.debug('hyps optimized: %s', utils_logger.get_str_hyps(hyps))
        logger.debug('time consumed to construct gpr: %.4f sec.',
                     time_end - time_start)
    return cov_X_X, inv_cov_X_X, hyps
コード例 #5
0
ファイル: gp.py プロジェクト: jtkim-lab/bayeso-1
def get_optimized_kernel(
        X_train,
        Y_train,
        prior_mu,
        str_cov,
        str_optimizer_method=constants.STR_OPTIMIZER_METHOD_GP,
        str_modelselection_method=constants.STR_MODELSELECTION_METHOD,
        is_fixed_noise=constants.IS_FIXED_GP_NOISE,
        debug=False):
    # TODO: check to input same is_fixed_noise to convert_hyps and restore_hyps
    assert isinstance(X_train, np.ndarray)
    assert isinstance(Y_train, np.ndarray)
    assert callable(prior_mu) or prior_mu is None
    assert isinstance(str_cov, str)
    assert isinstance(str_optimizer_method, str)
    assert isinstance(str_modelselection_method, str)
    assert isinstance(is_fixed_noise, bool)
    assert isinstance(debug, bool)
    assert len(Y_train.shape) == 2
    assert X_train.shape[0] == Y_train.shape[0]
    _check_str_cov('get_optimized_kernel', str_cov, X_train.shape)
    assert str_optimizer_method in constants.ALLOWED_OPTIMIZER_METHOD_GP
    assert str_modelselection_method in constants.ALLOWED_MODELSELECTION_METHOD

    time_start = time.time()

    if debug:
        print('[DEBUG] get_optimized_kernel in gp.py: str_optimizer_method {}'.
              format(str_optimizer_method))
        print(
            '[DEBUG] get_optimized_kernel in gp.py: str_modelselection_method {}'
            .format(str_modelselection_method))

    prior_mu_train = get_prior_mu(prior_mu, X_train)
    if str_cov in constants.ALLOWED_GP_COV_BASE:
        num_dim = X_train.shape[1]
    elif str_cov in constants.ALLOWED_GP_COV_SET:
        num_dim = X_train.shape[2]

    if str_modelselection_method == 'ml':
        neg_log_ml = lambda hyps: -1.0 * log_ml(X_train,
                                                Y_train,
                                                hyps,
                                                str_cov,
                                                prior_mu_train,
                                                is_fixed_noise=is_fixed_noise,
                                                debug=debug)
    elif str_modelselection_method == 'loocv':
        neg_log_ml = lambda hyps: -1.0 * log_pseudo_l_loocv(X_train,
                                                            Y_train,
                                                            hyps,
                                                            str_cov,
                                                            prior_mu_train,
                                                            is_fixed_noise=
                                                            is_fixed_noise,
                                                            debug=debug)
    else:  # pragma: no cover
        raise ValueError(
            'get_optimized_kernel: missing conditions for str_modelselection_method.'
        )

    hyps_converted = utils_covariance.convert_hyps(
        str_cov,
        utils_covariance.get_hyps(str_cov, num_dim),
        is_fixed_noise=is_fixed_noise,
    )

    if str_optimizer_method == 'BFGS':
        result_optimized = scipy.optimize.minimize(neg_log_ml,
                                                   hyps_converted,
                                                   method=str_optimizer_method)
        result_optimized = result_optimized.x
    elif str_optimizer_method == 'L-BFGS-B':
        bounds = utils_covariance.get_range_hyps(str_cov,
                                                 num_dim,
                                                 is_fixed_noise=is_fixed_noise)
        result_optimized = scipy.optimize.minimize(neg_log_ml,
                                                   hyps_converted,
                                                   method=str_optimizer_method,
                                                   bounds=bounds)
        result_optimized = result_optimized.x
    # TODO: Fill this conditions
    elif str_optimizer_method == 'DIRECT':  # pragma: no cover
        raise NotImplementedError(
            'get_optimized_kernel: allowed str_optimizer_method, but it is not implemented.'
        )
    elif str_optimizer_method == 'CMA-ES':  # pragma: no cover
        raise NotImplementedError(
            'get_optimized_kernel: allowed str_optimizer_method, but it is not implemented.'
        )
    # INFO: It is allowed, but a condition is missed.
    else:  # pragma: no cover
        raise ValueError(
            'get_optimized_kernel: missing conditions for str_optimizer_method'
        )

    hyps = utils_covariance.restore_hyps(str_cov,
                                         result_optimized,
                                         is_fixed_noise=is_fixed_noise)

    hyps, _ = utils_covariance.validate_hyps_dict(hyps, str_cov, num_dim)
    cov_X_X, inv_cov_X_X = get_kernel_inverse(X_train,
                                              hyps,
                                              str_cov,
                                              debug=debug)

    time_end = time.time()

    if debug:
        print('[DEBUG] get_optimized_kernel in gp.py: optimized hyps for gpr',
              hyps)
        print('[DEBUG] get_optimized_kernel in gp.py: time consumed',
              time_end - time_start, 'sec.')
    return cov_X_X, inv_cov_X_X, hyps
コード例 #6
0
ファイル: gp.py プロジェクト: MINGUKKANG/bayeso
def get_optimized_kernel(
        X_train,
        Y_train,
        prior_mu,
        str_cov,
        str_optimizer_method=constants.STR_OPTIMIZER_METHOD_GP,
        str_modelselection_method=constants.STR_MODELSELECTION_METHOD,
        is_fixed_noise=constants.IS_FIXED_GP_NOISE,
        debug=False):
    """
    This function computes the kernel matrix optimized by optimization method specified, its inverse matrix, and the optimized hyperparameters.

    :param X_train: inputs. Shape: (n, d) or (n, m, d).
    :type X_train: numpy.ndarray
    :param Y_train: outputs. Shape: (n, 1).
    :type Y_train: numpy.ndarray
    :param prior_mu: prior mean function or None.
    :type prior_mu: function or NoneType
    :param str_cov: the name of covariance function.
    :type str_cov: str.
    :param str_optimizer_method: the name of optimization method.
    :type str_optimizer_method: str., optional
    :param str_modelselection_method: the name of model selection method.
    :type str_modelselection_method: str., optional
    :param is_fixed_noise: flag for fixing a noise.
    :type is_fixed_noise: bool., optional
    :param debug: flag for printing log messages.
    :type debug: bool., optional

    :returns: a tuple of kernel matrix over `X_train`, kernel matrix inverse, and dictionary of hyperparameters.
    :rtype: tuple of (numpy.ndarray, numpy.ndarray, dict.)

    :raises: AssertionError, ValueError

    """

    # TODO: check to input same is_fixed_noise to convert_hyps and restore_hyps
    assert isinstance(X_train, np.ndarray)
    assert isinstance(Y_train, np.ndarray)
    assert callable(prior_mu) or prior_mu is None
    assert isinstance(str_cov, str)
    assert isinstance(str_optimizer_method, str)
    assert isinstance(str_modelselection_method, str)
    assert isinstance(is_fixed_noise, bool)
    assert isinstance(debug, bool)
    assert len(Y_train.shape) == 2
    assert X_train.shape[0] == Y_train.shape[0]
    _check_str_cov('get_optimized_kernel', str_cov, X_train.shape)
    assert str_optimizer_method in constants.ALLOWED_OPTIMIZER_METHOD_GP
    assert str_modelselection_method in constants.ALLOWED_MODELSELECTION_METHOD
    # TODO: fix this.
    is_gradient = True

    time_start = time.time()

    if debug:
        print('[DEBUG] get_optimized_kernel in gp.py: str_optimizer_method {}'.
              format(str_optimizer_method))
        print(
            '[DEBUG] get_optimized_kernel in gp.py: str_modelselection_method {}'
            .format(str_modelselection_method))

    prior_mu_train = get_prior_mu(prior_mu, X_train)
    if str_cov in constants.ALLOWED_GP_COV_BASE:
        num_dim = X_train.shape[1]
    elif str_cov in constants.ALLOWED_GP_COV_SET:
        num_dim = X_train.shape[2]
        is_gradient = False

    if str_modelselection_method == 'ml':
        neg_log_ml_ = lambda hyps: neg_log_ml(X_train,
                                              Y_train,
                                              hyps,
                                              str_cov,
                                              prior_mu_train,
                                              is_fixed_noise=is_fixed_noise,
                                              is_gradient=is_gradient,
                                              debug=debug)
    elif str_modelselection_method == 'loocv':
        neg_log_ml_ = lambda hyps: neg_log_pseudo_l_loocv(X_train,
                                                          Y_train,
                                                          hyps,
                                                          str_cov,
                                                          prior_mu_train,
                                                          is_fixed_noise=
                                                          is_fixed_noise,
                                                          debug=debug)
        is_gradient = False
    else:  # pragma: no cover
        raise ValueError(
            'get_optimized_kernel: missing conditions for str_modelselection_method.'
        )

    hyps_converted = utils_covariance.convert_hyps(
        str_cov,
        utils_covariance.get_hyps(str_cov, num_dim),
        is_fixed_noise=is_fixed_noise,
    )

    if str_optimizer_method == 'BFGS':
        result_optimized = scipy.optimize.minimize(neg_log_ml_,
                                                   hyps_converted,
                                                   method=str_optimizer_method,
                                                   jac=is_gradient,
                                                   options={'disp': False})
        result_optimized = result_optimized.x
    elif str_optimizer_method == 'L-BFGS-B':
        bounds = utils_covariance.get_range_hyps(str_cov,
                                                 num_dim,
                                                 is_fixed_noise=is_fixed_noise)
        result_optimized = scipy.optimize.minimize(neg_log_ml_,
                                                   hyps_converted,
                                                   method=str_optimizer_method,
                                                   bounds=bounds,
                                                   jac=is_gradient,
                                                   options={'disp': False})
        result_optimized = result_optimized.x
    # TODO: Fill this conditions
    elif str_optimizer_method == 'DIRECT':  # pragma: no cover
        raise NotImplementedError(
            'get_optimized_kernel: allowed str_optimizer_method, but it is not implemented.'
        )
    elif str_optimizer_method == 'CMA-ES':  # pragma: no cover
        raise NotImplementedError(
            'get_optimized_kernel: allowed str_optimizer_method, but it is not implemented.'
        )
    else:  # pragma: no cover
        raise ValueError(
            'get_optimized_kernel: missing conditions for str_optimizer_method'
        )

    hyps = utils_covariance.restore_hyps(str_cov,
                                         result_optimized,
                                         is_fixed_noise=is_fixed_noise)

    hyps, _ = utils_covariance.validate_hyps_dict(hyps, str_cov, num_dim)
    cov_X_X, inv_cov_X_X, grad_cov_X_X = get_kernel_inverse(
        X_train, hyps, str_cov, is_fixed_noise=is_fixed_noise, debug=debug)

    time_end = time.time()

    if debug:
        print('[DEBUG] get_optimized_kernel in gp.py: optimized hyps for gpr',
              hyps)
        print('[DEBUG] get_optimized_kernel in gp.py: time consumed',
              time_end - time_start, 'sec.')
    return cov_X_X, inv_cov_X_X, hyps
コード例 #7
0
def cov_main(str_cov: str,
             X: np.ndarray,
             Xp: np.ndarray,
             hyps: dict,
             same_X_Xp: bool,
             jitter: float = constants.JITTER_COV) -> np.ndarray:
    """
    It computes kernel matrix over `X` and `Xp`, where `hyps` is given.

    :param str_cov: the name of covariance function.
    :type str_cov: str.
    :param X: one inputs. Shape: (n, d).
    :type X: numpy.ndarray
    :param Xp: another inputs. Shape: (m, d).
    :type Xp: numpy.ndarray
    :param hyps: dictionary of hyperparameters for covariance function.
    :type hyps: dict.
    :param same_X_Xp: flag for checking `X` and `Xp` are same.
    :type same_X_Xp: bool.
    :param jitter: jitter for diagonal entries.
    :type jitter: float, optional

    :returns: kernel matrix over `X` and `Xp`. Shape: (n, m).
    :rtype: numpy.ndarray

    :raises: AssertionError, ValueError

    """

    assert isinstance(str_cov, str)
    assert isinstance(X, np.ndarray)
    assert isinstance(Xp, np.ndarray)
    assert isinstance(hyps, dict)
    assert isinstance(same_X_Xp, bool)
    assert isinstance(jitter, float)
    assert str_cov in constants.ALLOWED_COV

    num_X = X.shape[0]
    num_Xp = Xp.shape[0]

    cov_X_Xp = np.zeros((num_X, num_Xp))
    if same_X_Xp:
        assert num_X == num_Xp
        cov_X_Xp += np.eye(num_X) * jitter

    if str_cov in constants.ALLOWED_COV_BASE:
        assert len(X.shape) == 2
        assert len(Xp.shape) == 2
        dim_X = X.shape[1]
        dim_Xp = Xp.shape[1]
        assert dim_X == dim_Xp

        hyps = utils_covariance.validate_hyps_dict(hyps, str_cov, dim_X)

        fun_cov = choose_fun_cov(str_cov)
        cov_X_Xp += fun_cov(X, Xp, hyps['lengthscales'], hyps['signal'])

        assert cov_X_Xp.shape == (num_X, num_Xp)
    elif str_cov in constants.ALLOWED_COV_SET:
        list_str_cov = str_cov.split('_')
        str_cov = list_str_cov[1]

        assert len(X.shape) == 3
        assert len(Xp.shape) == 3

        dim_X = X.shape[2]
        dim_Xp = Xp.shape[2]

        assert dim_X == dim_Xp

        hyps = utils_covariance.validate_hyps_dict(hyps, str_cov, dim_X)

        if not same_X_Xp:
            for ind_X in range(0, num_X):
                for ind_Xp in range(0, num_Xp):
                    cov_X_Xp[ind_X,
                             ind_Xp] += cov_set(str_cov, X[ind_X], Xp[ind_Xp],
                                                hyps['lengthscales'],
                                                hyps['signal'])
        else:
            for ind_X in range(0, num_X):
                for ind_Xp in range(ind_X, num_Xp):
                    cov_X_Xp[ind_X,
                             ind_Xp] += cov_set(str_cov, X[ind_X], Xp[ind_Xp],
                                                hyps['lengthscales'],
                                                hyps['signal'])
                    if ind_X < ind_Xp:
                        cov_X_Xp[ind_Xp, ind_X] = cov_X_Xp[ind_X, ind_Xp]
    else:
        raise NotImplementedError(
            'cov_main: allowed str_cov, but it is not implemented.')

    return cov_X_Xp
コード例 #8
0
def test_validate_hyps_dict():
    num_dim = 2
    str_cov = 'matern32'

    cur_hyps = package_target.get_hyps(str_cov, num_dim)
    with pytest.raises(AssertionError) as error:
        _ = package_target.validate_hyps_dict(123, str_cov, num_dim)
    with pytest.raises(AssertionError) as error:
        _ = package_target.validate_hyps_dict(cur_hyps, 'abc', num_dim)
    with pytest.raises(AssertionError) as error:
        _ = package_target.validate_hyps_dict(cur_hyps, str_cov, 'abc')
    with pytest.raises(AssertionError) as error:
        _ = package_target.validate_hyps_dict(cur_hyps,
                                              str_cov,
                                              num_dim,
                                              use_gp=1)
    with pytest.raises(AssertionError) as error:
        _ = package_target.validate_hyps_dict(cur_hyps,
                                              str_cov,
                                              num_dim,
                                              use_gp='abc')

    cur_hyps = package_target.get_hyps(str_cov, num_dim)
    cur_hyps.pop('noise')
    with pytest.raises(ValueError) as error:
        _ = package_target.validate_hyps_dict(cur_hyps, str_cov, num_dim)

    cur_hyps = package_target.get_hyps(str_cov, num_dim)
    cur_hyps.pop('lengthscales')
    with pytest.raises(ValueError) as error:
        _ = package_target.validate_hyps_dict(cur_hyps, str_cov, num_dim)

    cur_hyps = package_target.get_hyps(str_cov, num_dim)
    cur_hyps.pop('signal')
    with pytest.raises(ValueError) as error:
        _ = package_target.validate_hyps_dict(cur_hyps, str_cov, num_dim)

    cur_hyps = package_target.get_hyps(str_cov, num_dim)
    cur_hyps['noise'] = 'abc'
    with pytest.raises(ValueError) as error:
        _ = package_target.validate_hyps_dict(cur_hyps, str_cov, num_dim)

    cur_hyps = package_target.get_hyps(str_cov, num_dim)
    cur_hyps['noise'] = np.inf
    cur_hyps = package_target.validate_hyps_dict(cur_hyps, str_cov, num_dim)
    assert cur_hyps['noise'] == constants.BOUND_UPPER_GP_NOISE

    cur_hyps = package_target.get_hyps(str_cov, num_dim)
    with pytest.raises(ValueError) as error:
        _ = package_target.validate_hyps_dict(cur_hyps, str_cov, 123)

    cur_hyps = package_target.get_hyps(str_cov, num_dim)
    cur_hyps['lengthscales'] = 'abc'
    with pytest.raises(ValueError) as error:
        _ = package_target.validate_hyps_dict(cur_hyps, str_cov, num_dim)

    cur_hyps = package_target.get_hyps(str_cov, num_dim)
    cur_hyps['signal'] = 'abc'
    with pytest.raises(ValueError) as error:
        _ = package_target.validate_hyps_dict(cur_hyps, str_cov, num_dim)

    cur_hyps = package_target.get_hyps(str_cov, num_dim, use_gp=False)
    cur_hyps['signal'] = 'abc'
    with pytest.raises(ValueError) as error:
        _ = package_target.validate_hyps_dict(cur_hyps, str_cov, num_dim)

    cur_hyps = package_target.get_hyps(str_cov, num_dim, use_gp=False)
    cur_hyps['dof'] = 'abc'
    with pytest.raises(ValueError) as error:
        _ = package_target.validate_hyps_dict(cur_hyps,
                                              str_cov,
                                              num_dim,
                                              use_gp=False)

    cur_hyps = package_target.get_hyps(str_cov, num_dim, use_gp=False)
    cur_hyps.pop('dof')
    with pytest.raises(ValueError) as error:
        _ = package_target.validate_hyps_dict(cur_hyps,
                                              str_cov,
                                              num_dim,
                                              use_gp=False)

    cur_hyps = package_target.get_hyps(str_cov, num_dim, use_gp=False)
    cur_hyps['dof'] = 1.5
    with pytest.raises(AssertionError) as error:
        _ = package_target.validate_hyps_dict(cur_hyps,
                                              str_cov,
                                              num_dim,
                                              use_gp=False)
        if cur_hyps['dof'] == 2.00001:
            assert False
    with pytest.raises(AssertionError) as error:
        assert cur_hyps['dof'] == 1.5

    cur_hyps = package_target.get_hyps(str_cov,
                                       num_dim,
                                       use_ard=False,
                                       use_gp=False)
    print(cur_hyps)
    cur_hyps['lengthscales'] = 'abc'
    with pytest.raises(ValueError) as error:
        _ = package_target.validate_hyps_dict(cur_hyps,
                                              str_cov,
                                              num_dim,
                                              use_gp=False)