def run(N=50, K=5, D=2): # Generate data N1 = np.floor(0.5*N) N2 = N - N1 y = np.vstack([np.random.normal(0, 0.5, size=(N1,D)), np.random.normal(10, 0.5, size=(N2,D))]) # Construct model Q = gaussianmix_model(N,K,D) # Observe data Q['Y'].observe(y) # Run inference Q.update(repeat=30) # Run predictive model zh = nodes.Categorical(Q['alpha'], name='zh') Yh = nodes.Mixture(zh, nodes.Gaussian, Q['X'], Q['Lambda'], name='Yh') zh.update() # Plot predictive pdf N1 = 400 N2 = 400 x1 = np.linspace(-3, 15, N1) x2 = np.linspace(-3, 15, N2) xh = misc.grid(x1, x2) lpdf = Yh.integrated_logpdf_from_parents(xh, 0) pdf = np.reshape(np.exp(lpdf), (N2,N1)) plt.clf() plt.contourf(x1, x2, pdf, 100) plt.scatter(y[:,0], y[:,1]) print('integrated pdf:', np.sum(pdf)*(18*18)/(N1*N2))
def gaussianmix_model(N, K, D): # N = number of data vectors # K = number of clusters # D = dimensionality # Construct the Gaussian mixture model # K prior weights (for components) alpha = nodes.Dirichlet(1 * np.ones(K), name='alpha') # N K-dimensional cluster assignments (for data) z = nodes.Categorical(alpha, plates=(N, ), name='z') # K D-dimensional component means X = nodes.Gaussian(np.zeros(D), 0.01 * np.identity(D), plates=(K, ), name='X') # K D-dimensional component covariances Lambda = nodes.Wishart(D, 0.01 * np.identity(D), plates=(K, ), name='Lambda') # N D-dimensional observation vectors Y = nodes.Mixture(nodes.Gaussian)(z, X, Lambda, plates=(N, ), name='Y') # TODO: Plates should be learned automatically if not given (it # would be the smallest shape broadcasted from the shapes of the # parents) return (Y, X, Lambda, z, alpha)
def gaussianmix_model(N, K, D, covariance='full'): # N = number of data vectors # K = number of clusters # D = dimensionality # Construct the Gaussian mixture model # K prior weights (for components) alpha = nodes.Dirichlet(1e-3*np.ones(K), name='alpha') # N K-dimensional cluster assignments (for data) z = nodes.Categorical(alpha, plates=(N,), name='z') # K D-dimensional component means X = nodes.GaussianARD(0, 1e-3, shape=(D,), plates=(K,), name='X') if covariance.lower() == 'full': # K D-dimensional component covariances Lambda = nodes.Wishart(D, 0.01*np.identity(D), plates=(K,), name='Lambda') # N D-dimensional observation vectors Y = nodes.Mixture(z, nodes.Gaussian, X, Lambda, plates=(N,), name='Y') elif covariance.lower() == 'diagonal': # Inverse variances Lambda = nodes.Gamma(1e-3, 1e-3, plates=(K, D), name='Lambda') # N D-dimensional observation vectors Y = nodes.Mixture(z, nodes.GaussianARD, X, Lambda, plates=(N,), name='Y') elif covariance.lower() == 'isotropic': # Inverse variances Lambda = nodes.Gamma(1e-3, 1e-3, plates=(K, 1), name='Lambda') # N D-dimensional observation vectors Y = nodes.Mixture(z, nodes.GaussianARD, X, Lambda, plates=(N,), name='Y') z.initialize_from_random() return VB(Y, X, Lambda, z, alpha)
def run(N=50, K=5, D=2): #plt.ion() #17,31 #np.random.seed(31) # Generate data N1 = np.floor(0.5 * N) N2 = N - N1 y = np.vstack([ np.random.normal(0, 0.5, size=(N1, D)), np.random.normal(10, 0.5, size=(N2, D)) ]) # Construct model (Y, X, Lambda, z, alpha) = gaussianmix_model(N, K, D) # Initialize nodes (from prior and randomly) alpha.initialize_from_prior() z.initialize_from_prior() Lambda.initialize_from_parameters(D, 10 * np.identity(D)) X.initialize_from_prior() X.initialize_from_parameters(X.random(), np.identity(D)) ## X.initialize_from_parameters(np.random.permutation(y)[:K], ## 0.01*np.identity(D)) #X.initialize_from_random() # Initialize means by selecting random data points #X.initialize_from_value(np.random.permutation(y)[:K]) #return #X.initialize_random_mean() #Y.initialize() ## X.show() ## return # Data with missing values ## mask = np.random.rand(M,N) < 0.4 # randomly missing ## mask[:,20:40] = False # gap missing # Y.observe(y, mask) ## alpha.show() ## Lambda.show() ## z.show() X.show() #return Y.observe(y) ## z.update() ## X.update() ## alpha.update() ## X.show() ## alpha.show() #Lambda.show() #return ## X.show() ## Lambda.show() ## z.update() ## z.show() ## return # Inference loop. maxiter = 30 L_X = np.zeros(maxiter) L_Lambda = np.zeros(maxiter) L_alpha = np.zeros(maxiter) L_z = np.zeros(maxiter) L_Y = np.zeros(maxiter) L = np.zeros(maxiter) L_last = -np.inf for i in range(maxiter): t = time.clock() # Update nodes z.update() alpha.update() X.update() Lambda.update() #Y.show() #z.show() # Compute lower bound L_X[i] = X.lower_bound_contribution() L_Lambda[i] = Lambda.lower_bound_contribution() L_alpha[i] = alpha.lower_bound_contribution() L_z[i] = z.lower_bound_contribution() L_Y[i] = Y.lower_bound_contribution() L[i] = L_X[i] + L_Lambda[i] + L_alpha[i] + L_z[i] + L_Y[i] #print('terms:', L_X[i], L_Lambda[i], L_alpha[i], L_z[i], L_Y[i]) # Check convergence print("Iteration %d: loglike=%e (%.3f seconds)" % (i + 1, L[i], time.clock() - t)) if L_last - L[i] > 1e-6: L_diff = (L_last - L[i]) print( "Lower bound decreased %e! Bug somewhere or numerical inaccuracy?" % L_diff) #raise Exception("Lower bound decreased %e! Bug somewhere or numerical inaccuracy?" % L_diff) if L[i] - L_last < 1e-12: print("Converged.") #break L_last = L[i] # Predictive stuff zh = nodes.Categorical(alpha, name='zh') Yh = nodes.Mixture(nodes.Gaussian)(zh, X, Lambda, name='Yh') # TODO/FIXME: Messages to parents should use the masks such that # children don't need to be initialized! zh.initialize_from_prior() Yh.initialize_from_prior() zh.update() #zh.show() N1 = 400 N2 = 400 x1 = np.linspace(-3, 15, N1) x2 = np.linspace(-3, 15, N2) xh = utils.grid(x1, x2) lpdf = Yh.integrated_logpdf_from_parents(xh, 0) pdf = np.reshape(np.exp(lpdf), (N2, N1)) #print(pdf) #plt.clf() plt.clf() #plt.imshow(x1, x2, pdf) plt.contourf(x1, x2, pdf, 100) plt.scatter(y[:, 0], y[:, 1]) print('integrated pdf:', np.sum(pdf) * (18 * 18) / (N1 * N2)) #return X.show() alpha.show() plt.show()
def categorical_model(M, D): p = EF.Dirichlet(1 * np.ones(D), name='p') z = EF.Categorical(p, plates=(M, ), name='z') return (z, p)