def test_transform_function(self): """ Tests that the transform function works properly by transforming the output of the compute method of the black-box function. """ def perf_function(x): return x + 2 bb_obj = BBOptimizer( black_box=self.parabola, heuristic="surrogate_model", max_iteration=nbr_iteration, parameter_space=parameter_space, perf_function=perf_function, regression_model=GaussianProcessRegressor, next_parameter_strategy=expected_improvement, ) self.assertEqual( bb_obj.compute_result(np.array([5, 0])), 27, "Use of a transformation " "function black-box output " "did not work properly.", )
def test_evaluate_fitness_single_item(self): """ Tests that the fitness is properly evaluated when applied on a single numpy array. """ test_parameters = np.array([2, 3]) expected_result = np.array([13]) bb_obj = BBOptimizer( black_box=self.parabola, heuristic="surrogate_model", max_iteration=nbr_iteration, time_out=time_out, parameter_space=parameter_space, next_parameter_strategy=expected_improvement, regression_model=GaussianProcessRegressor, ) result = bb_obj.compute_result(test_parameters) np.testing.assert_array_equal( expected_result, result, "Fitness evaluation on a parameter " "single item did not work as " "expected.", )