def main2(dsList, dimsOfInterest, outputdir='.', info='', verbose=True): """Generate a table of ratio ERT/ERTbest vs target precision. 1 table per dimension will be generated. Rank-sum tests table on "Final Data Points" for only one algorithm. that is, for example, using 1/#fevals(ftarget) if ftarget was reached and -f_final otherwise as input for the rank-sum test, where obviously the larger the better. """ # TODO: remove dimsOfInterest, was added just for compatibility's sake if info: info = '_' + info # insert a separator between the default file name and the additional # information string. if not bestalg.bestalgentries2009: bestalg.loadBBOB2009() for d, dsdim in dsList.dictByDim().iteritems(): dictfun = dsdim.dictByFunc() res = [] for f, dsfun in sorted(dsdim.dictByFunc().iteritems()): assert len(dsfun) == 1, ('Expect one-element DataSetList for a ' 'given dimension and function') ds = dsfun[0] data = _treat(ds) res = _table(data) res = [] outputfile = os.path.join(outputdir, 'pptable_%02dD%s.tex' % (d, info)) f = open(outputfile, 'w') f.write(res) f.close() if verbose: print "Table written in %s" % outputfile
def generateData(dsList, evals, CrE_A): res = {} D = set(i.dim for i in dsList).pop() # should have only one element #if D == 3: #set_trace() if not bestalg.bestalgentries2009: bestalg.loadBBOB2009() for fun, tmpdsList in dsList.dictByFunc().iteritems(): assert len(tmpdsList) == 1 entry = tmpdsList[0] bestalgentry = bestalg.bestalgentries2009[(D, fun)] #ERT_A f_A = detf(entry, evals) ERT_best = detERT(bestalgentry, f_A) ERT_A = detERT(entry, f_A) nextbestf = [] for i in f_A: if i == 0.: nextbestf.append(0.) else: tmp = bestalgentry.target[bestalgentry.target < i] try: nextbestf.append(tmp[0]) except IndexError: nextbestf.append(i * 10.**(-0.2)) # TODO: this is a hack ERT_best_nextbestf = detERT(bestalgentry, nextbestf) for i in range(len(ERT_A)): # nextbestf[i] >= f_thresh: this is tested because if it is not true # ERT_best_nextbestf[i] is supposed to be infinite. if nextbestf[i] >= f_thresh and ERT_best_nextbestf[i] < evals[ i]: # is different from the specification... ERT_A[i] = evals[i] # For test purpose: #if fun % 10 == 0: # ERT_A[-2] = 1. # ERT_best[-2] = numpy.inf ERT_A = numpy.array(ERT_A) ERT_best = numpy.array(ERT_best) loss_A = numpy.exp(CrE_A) * ERT_A / ERT_best assert (numpy.isnan(loss_A) == False).all() #set_trace() #if numpy.isnan(loss_A).any() or numpy.isinf(loss_A).any() or (loss_A == 0.).any(): # txt = 'Problem with entry %s' % str(entry) # warnings.warn(txt) # #set_trace() res[fun] = loss_A return res
def generateData(dsList, evals, CrE_A): res = {} D = set(i.dim for i in dsList).pop() # should have only one element #if D == 3: #set_trace() if not bestalg.bestalgentries2009: bestalg.loadBBOB2009() for fun, tmpdsList in dsList.dictByFunc().iteritems(): assert len(tmpdsList) == 1 entry = tmpdsList[0] bestalgentry = bestalg.bestalgentries2009[(D, fun)] #ERT_A f_A = detf(entry, evals) ERT_best = detERT(bestalgentry, f_A) ERT_A = detERT(entry, f_A) nextbestf = [] for i in f_A: if i == 0.: nextbestf.append(0.) else: tmp = bestalgentry.target[bestalgentry.target < i] try: nextbestf.append(tmp[0]) except IndexError: nextbestf.append(i * 10.**(-0.2)) # TODO: this is a hack ERT_best_nextbestf = detERT(bestalgentry, nextbestf) for i in range(len(ERT_A)): # nextbestf[i] >= f_thresh: this is tested because if it is not true # ERT_best_nextbestf[i] is supposed to be infinite. if nextbestf[i] >= f_thresh and ERT_best_nextbestf[i] < evals[i]: # is different from the specification... ERT_A[i] = evals[i] # For test purpose: #if fun % 10 == 0: # ERT_A[-2] = 1. # ERT_best[-2] = numpy.inf ERT_A = numpy.array(ERT_A) ERT_best = numpy.array(ERT_best) loss_A = numpy.exp(CrE_A) * ERT_A / ERT_best assert (numpy.isnan(loss_A) == False).all() #set_trace() #if numpy.isnan(loss_A).any() or numpy.isinf(loss_A).any() or (loss_A == 0.).any(): # txt = 'Problem with entry %s' % str(entry) # warnings.warn(txt) # #set_trace() res[fun] = loss_A return res
def plot_previous_algorithms(func, target=lambda x: [1e-8]): """Add graph of the BBOB-2009 virtual best algorithm.""" if isinstance(values_of_interest, pproc.RunlengthBasedTargetValues): return None if not bestalg.bestalgentries2009: bestalg.loadBBOB2009() bestalgdata = [] for d in dimensions: entry = bestalg.bestalgentries2009[(d, func)] tmp = entry.detERT([target((func, d))[-1]])[0] if not np.isinf(tmp): bestalgdata.append(tmp / d) else: bestalgdata.append(None) res = plt.plot(dimensions, bestalgdata, color=refcolor, linewidth=10, marker='d', markersize=25, markeredgecolor='k', zorder= -2) return res
def main(dsList, _valuesOfInterest, outputdir, verbose=True): """From a DataSetList, returns a convergence and ERT/dim figure vs dim. Uses data of BBOB 2009 (:py:mod:`bbob_pproc.bestalg`). :param DataSetList dsList: data sets :param seq _valuesOfInterest: target precisions, there might be as many graphs as there are elements in this input :param string outputdir: output directory :param bool verbose: controls verbosity """ # plt.rc("axes", labelsize=20, titlesize=24) # plt.rc("xtick", labelsize=20) # plt.rc("ytick", labelsize=20) # plt.rc("font", size=20) # plt.rc("legend", fontsize=20) if not bestalg.bestalgentries2009: bestalg.loadBBOB2009() dictFunc = dsList.dictByFunc() for func in dictFunc: plot(dictFunc[func], _valuesOfInterest, styles=styles) # styles might have changed via config beautify(axesLabel=False) plt.text(plt.xlim()[0], plt.ylim()[0], _valuesOfInterest.short_info, fontsize=14) if func in functions_with_legend: plt.legend(loc="best") if isBenchmarkinfosFound: plt.gca().set_title(funInfos[func]) plot_previous_algorithms(func, _valuesOfInterest) filename = os.path.join(outputdir, 'ppfigdim_f%03d' % (func)) saveFigure(filename, verbose=verbose) plt.close()
def main(dsList, _valuesOfInterest, outputdir, verbose=True): """From a DataSetList, returns a convergence and ERT/dim figure vs dim. Uses data of BBOB 2009 (:py:mod:`bbob_pproc.bestalg`). :param DataSetList dsList: data sets :param seq _valuesOfInterest: target precisions, either as list or as ``pproc.TargetValues`` class instance. There will be as many graphs as there are elements in this input. :param string outputdir: output directory :param bool verbose: controls verbosity """ # plt.rc("axes", labelsize=20, titlesize=24) # plt.rc("xtick", labelsize=20) # plt.rc("ytick", labelsize=20) # plt.rc("font", size=20) # plt.rc("legend", fontsize=20) _valuesOfInterest = pproc.TargetValues.cast(_valuesOfInterest) if not bestalg.bestalgentries2009: bestalg.loadBBOB2009() dictFunc = dsList.dictByFunc() for func in dictFunc: plot(dictFunc[func], _valuesOfInterest, styles=styles) # styles might have changed via config beautify(axesLabel=False) plt.text(plt.xlim()[0], plt.ylim()[0], _valuesOfInterest.short_info, fontsize=14) if func in functions_with_legend: plt.legend(loc="best") if isBenchmarkinfosFound: plt.gca().set_title(funInfos[func]) plot_previous_algorithms(func, _valuesOfInterest) filename = os.path.join(outputdir, 'ppfigdim_f%03d' % (func)) saveFigure(filename, verbose=verbose) plt.close()
def plot_previous_algorithms(func, target=values_of_interest): # lambda x: [1e-8]): """Add graph of the BBOB-2009 virtual best algorithm using the last, most difficult target in ``target``.""" target = pproc.TargetValues.cast(target) if not bestalg.bestalgentries2009: bestalg.loadBBOB2009() bestalgdata = [] for d in dimensions: try: entry = bestalg.bestalgentries2009[(d, func)] tmp = entry.detERT([target((func, d))[-1]])[0] if not np.isinf(tmp): bestalgdata.append(tmp / d) else: bestalgdata.append(None) except KeyError: #dimension not in bestalg bestalgdata.append(None) res = plt.plot(dimensions, bestalgdata, color=refcolor, linewidth=10, marker='d', markersize=25, markeredgecolor='k', zorder= -2) return res
def plot_previous_algorithms(func, target=lambda x: [1e-8]): """Add graph of the BBOB-2009 virtual best algorithm.""" if isinstance(values_of_interest, pproc.RunlengthBasedTargetValues): return None if not bestalg.bestalgentries2009: bestalg.loadBBOB2009() bestalgdata = [] for d in dimensions: entry = bestalg.bestalgentries2009[(d, func)] tmp = entry.detERT([target((func, d))[-1]])[0] if not np.isinf(tmp): bestalgdata.append(tmp / d) else: bestalgdata.append(None) res = plt.plot(dimensions, bestalgdata, color=refcolor, linewidth=10, marker='d', markersize=25, markeredgecolor='k', zorder=-2) return res
def mainnew(dsList0, dsList1, dimsOfInterest, outputdir, info='', verbose=True): """Still in shambles: new cleaned up version. One table per dimension... """ dictDim0 = dsList0.dictByDim() dictDim1 = dsList1.dictByDim() alg0 = set(i[0] for i in dsList0.dictByAlg().keys()).pop()[0:3] alg1 = set(i[0] for i in dsList1.dictByAlg().keys()).pop()[0:3] if info: info = '_' + info dims = set.intersection(set(dictDim0.keys()), set(dictDim1.keys())) if not bestalg.bestalgentries: bestalg.loadBBOB2009() header = [r'$\Delta f$'] for i in targetsOfInterest: #header.append(r'\multicolumn{2}{@{}c@{}}{$10^{%d}$}' % (int(numpy.log10(i)))) header.append(r'\multicolumn{2}{@{}c@{}}{1e%+d}' % (int(numpy.log10(i)))) header.append(r'\multicolumn{2}{|@{}r@{}}{\#succ}') for d in dimsOfInterest: # TODO set as input arguments table = [header] extraeol = [r'\hline'] dictFunc0 = dictDim0[d].dictByFunc() dictFunc1 = dictDim1[d].dictByFunc() funcs = set.union(set(dictFunc0.keys()), set(dictFunc1.keys())) nbtests = len(funcs) * 2. #len(dimsOfInterest) for f in sorted(funcs): bestalgentry = bestalg.bestalgentries[(d, f)] curline = [r'${\bf f_{%d}}$' % f] bestalgdata = bestalgentry.detERT(targetsOfInterest) bestalgevals, bestalgalgs = bestalgentry.detEvals( targetsOfInterest) for i in bestalgdata[:-1]: #if numpy.isnan(i): #set_trace() curline.append(r'\multicolumn{2}{@{}c@{}}{%s}' % writeFEvals2(i, 2)) curline.append(r'\multicolumn{2}{@{}c@{}|}{%s}' % writeFEvals2(bestalgdata[-1], 2)) tmp = bestalgentry.detEvals([targetf])[0][0] tmp2 = numpy.sum(numpy.isnan(tmp) == False) curline.append('%d' % (tmp2)) if tmp2 > 0: curline.append('/%d' % len(tmp)) table.append(curline[:]) extraeol.append('') rankdata0 = [] # generate all data from ranksum test entries = [] ertdata = {} for nb, dsList in enumerate((dictFunc0, dictFunc1)): try: entry = dsList[f][0] # take the first element except KeyError: continue # TODO: problem here! ertdata[nb] = entry.detERT(targetsOfInterest) entries.append(entry) testres0vs1 = significancetest(entries[0], entries[1], targetsOfInterest) testresbestvs1 = significancetest(bestalgentry, entries[1], targetsOfInterest) for nb, entry in enumerate(entries): if nb == 0: curline = [r'0:\:\algzeroshort\hspace*{\fill}'] else: curline = [r'1:\:\algoneshort\hspace*{\fill}'] #curline = [r'\alg%sshort' % tmp] #curline = [r'Alg%d' % nb] #curline = [r'%.3s%d' % (entry.algId, nb)] data = entry.detERT(targetsOfInterest) if nb == 0: assert not isinstance(data, numpy.ndarray) data0 = data[:] # check if it is not an array for i, j in enumerate( data): # is j an appropriate identifier here? #if numpy.isnan(float(j)/bestalgdata[i]): # set_trace() z, p = testres0vs1[ i] #TODO: there is something with the sign that I don't get # assign significance flag significance0vs1 = 0 if nb == 0: istat0 = 0 istat1 = 1 else: z = -z istat0 = 1 istat1 = 0 # TODO: I don't understand the thing with the sign of significance0vs1 if (nbtests * p < 0.05 and z > 0 and not numpy.isinf(ertdata[istat0][i]) and z * (ertdata[istat1][i] - ertdata[istat0][i]) > 0): # z-value and ERT-ratio must agree significance0vs1 = -int( numpy.ceil(numpy.log10(nbtests * p))) elif nbtests * p < 0.05 and z < 0 and z * ( ertdata[istat1][i] - ertdata[istat0][i]) > 0: significance0vs1 = int( numpy.ceil(numpy.log10(nbtests * p))) alignment = 'c' if i == len(data) - 1: # last element alignment = 'c|' if numpy.isinf(bestalgdata[i]): tableentry = ( r'\multicolumn{2}{@{}%s@{}}{\textbf{\textit{%s}}}' % (alignment, writeFEvals2(float(j), 2))) # TODO: is this the desired behaviour? else: # Formatting tmp = float(j) / bestalgdata[i] assert not numpy.isnan(tmp) isscientific = False if tmp >= 1000: isscientific = True tableentry = writeFEvals2(tmp, 2, isscientific=isscientific) isBold = False if significance0vs1 > 0: isBold = True if numpy.isinf(tmp) and i == len(data) - 1: tableentry = ( tableentry + r'\textit{%s}' % writeFEvals2(numpy.median(entry.maxevals), 2)) if isBold: tableentry = r'\textbf{%s}' % tableentry elif 11 < 3 and significance0vs1 < 0: tableentry = r'\textit{%s}' % tableentry tableentry = (r'\multicolumn{2}{@{}%s@{}}{%s}' % (alignment, tableentry)) elif tableentry.find('e') > -1 or (numpy.isinf(tmp) and i != len(data) - 1): if isBold: tableentry = r'\textbf{%s}' % tableentry elif 11 < 3 and significance0vs1 < 0: tableentry = r'\textit{%s}' % tableentry tableentry = (r'\multicolumn{2}{@{}%s@{}}{%s}' % (alignment, tableentry)) else: tmp = tableentry.split('.', 1) if isBold: tmp = list(r'\textbf{%s}' % i for i in tmp) elif 11 < 3 and significance0vs1 < 0: tmp = list(r'\textit{%s}' % i for i in tmp) tableentry = ' & .'.join(tmp) if len(tmp) == 1: tableentry += '&' superscript = '' z, p = testresbestvs1[i] #z, p = ranksums(rankdatabest[i], currankdata) #if ((nbtests * p) < 0.05 # and ((numpy.isinf(bestalgdata[i]) and numpy.isinf(j)) # or z * (j - bestalgdata[i]) > 0)): # z-value and ERT-ratio must agree #The conditions are now that ERT < ERT_best and # all(sorted(FEvals_best) > sorted(FEvals_current)). if j - bestalgdata[i] < 0. and not numpy.isinf( bestalgdata[i]): evals = entry.detEvals([targetsOfInterest[i]])[0] evals[numpy.isnan(evals)] = entry.maxevals[numpy.isnan( evals)] bestevals = bestalgentry.detEvals( [targetsOfInterest[i]]) bestevals, bestalgalg = (bestevals[0][0], bestevals[1][0]) bestevals[numpy.isnan( bestevals)] = bestalgentry.maxevals[bestalgalg][ numpy.isnan(bestevals)] evals = numpy.array( sorted(evals))[0:min(len(evals), len(bestevals))] bestevals = numpy.array(sorted( bestevals))[0:min(len(evals), len(bestevals))] #The conditions are now that ERT < ERT_best and # all(sorted(FEvals_best) > sorted(FEvals_current)). if ((nbtests * p) < 0.05 and j - bestalgdata[i] < 0. and z < 0. and (numpy.isinf(bestalgdata[i]) or all(evals < bestevals))): nbstars = -numpy.ceil(numpy.log10(nbtests * p)) #tmp = '\hspace{-.5ex}'.join(nbstars * [r'\star']) if z > 0: superscript = r'\uparrow' #* nbstars else: superscript = r'\downarrow' #* nbstars # print z, linebest[i], line1 if nbstars > 1: superscript += str(int(nbstars)) addition = '' if superscript or significance0vs1: s = '' if significance0vs1 > 0: s = '\star' if significance0vs1 > 1: s += str(significance0vs1) s = r'$^{' + s + superscript + r'}$' if tableentry.endswith('}'): tableentry = tableentry[:-1] + s + r'}' else: tableentry += s curline.append(tableentry) # Two cases: both tabular give an overfull hbox # AND generate a LaTeX Warning: Float too large for page by 16.9236pt on input line 421. (noisy) # OR generate a LaTeX Warning: Float too large for page by 33.57658pt on input line 421. (noisy) tmp = entry.evals[entry.evals[:, 0] <= targetf, 1:] try: tmp = tmp[0] curline.append('%d' % numpy.sum(numpy.isnan(tmp) == False)) except IndexError: curline.append('%d' % 0) curline.append('/%d' % entry.nbRuns()) table.append(curline[:]) extraeol.append('') extraeol[-1] = r'\hline' extraeol[-1] = '' outputfile = os.path.join(outputdir, 'cmptable_%02dD%s.tex' % (d, info)) spec = r'@{}c@{}|' + '*{%d}{@{}r@{}@{}l@{}}' % len( targetsOfInterest) + '|@{}r@{}@{}l@{}' res = r'\providecommand{\algzeroshort}{%s}' % alg0 + '\n' res += r'\providecommand{\algoneshort}{%s}' % alg1 + '\n' #res += tableLaTeXStar(table, width=r'0.45\textwidth', spec=spec, #extraeol=extraeol) res += tableLaTeX(table, spec=spec, extraeol=extraeol) f = open(outputfile, 'w') f.write(res) f.close() if verbose: print "Table written in %s" % outputfile
def main2(dsList0, dsList1, dimsOfInterest, outputdir, info='', verbose=True): """Generate comparison tables. One table per dimension... """ dictDim0 = dsList0.dictByDim() dictDim1 = dsList1.dictByDim() alg0 = set(i[0] for i in dsList0.dictByAlg().keys()).pop()[0:3] alg1 = set(i[0] for i in dsList1.dictByAlg().keys()).pop()[0:3] if info: info = '_' + info dims = set.intersection(set(dictDim0.keys()), set(dictDim1.keys())) if not bestalg.bestalgentries: bestalg.loadBBOB2009() header = [r'$\Delta f$'] for i in targetsOfInterest: #header.append(r'\multicolumn{2}{@{}c@{}}{$10^{%d}$}' % (int(numpy.log10(i)))) header.append(r'\multicolumn{2}{@{}c@{}}{1e%+d}' % (int(numpy.log10(i)))) header.append(r'\multicolumn{2}{|@{}r@{}}{\#succ}') for d in dimsOfInterest: # TODO set as input arguments table = [header] extraeol = [r'\hline'] dictFunc0 = dictDim0[d].dictByFunc() dictFunc1 = dictDim1[d].dictByFunc() funcs = set.union(set(dictFunc0.keys()), set(dictFunc1.keys())) nbtests = len(funcs) * 2. #len(dimsOfInterest) for f in sorted(funcs): bestalgentry = bestalg.bestalgentries[(d, f)] curline = [r'${\bf f_{%d}}$' % f] bestalgdata = bestalgentry.detERT(targetsOfInterest) bestalgevals, bestalgalgs = bestalgentry.detEvals( targetsOfInterest) for i in bestalgdata[:-1]: curline.append(r'\multicolumn{2}{@{}c@{}}{%s}' % writeFEvals2(i, 2)) curline.append(r'\multicolumn{2}{@{}c@{}|}{%s}' % writeFEvals2(bestalgdata[-1], 2)) rankdatabest = [] for i, j in enumerate(bestalgevals): if bestalgalgs[i] is None: tmp = -bestalgentry.finalfunvals[bestalgentry.algs[-1]] else: tmp = numpy.power(j, -1.) tmp[numpy.isnan(tmp)] = -bestalgentry.finalfunvals[ bestalgalgs[i]][numpy.isnan(tmp)] rankdatabest.append(tmp) tmp = bestalgentry.detEvals([targetf])[0][0] tmp2 = numpy.sum(numpy.isnan(tmp) == False) curline.append('%d' % (tmp2)) if tmp2 > 0: curline.append('/%d' % len(tmp)) table.append(curline[:]) extraeol.append('') rankdata0 = [] # generate all data for ranksum test rankdata = {} # rankdata[nb +/- 1,i] is of interest later ertdata = {} for nb, entries in enumerate( (dictFunc0, dictFunc1)): # copy paste of loop below try: entry = entries[f][0] # take the first element except KeyError: continue ertdata[nb] = entry.detERT(targetsOfInterest) evals = entry.detEvals(targetsOfInterest) for i, tmp in enumerate(ertdata[nb]): # print i rankdata[nb, i] = numpy.power(evals[i], -1.) rankdata[nb, i][numpy.isnan( rankdata[nb, i])] = -entry.finalfunvals[numpy.isnan( rankdata[nb, i])] for nb, entries in enumerate((dictFunc0, dictFunc1)): try: entry = entries[f][0] # take the first element except KeyError: continue if nb == 0: curline = [r'0:\:\algzeroshort\hspace*{\fill}'] else: curline = [r'1:\:\algoneshort\hspace*{\fill}'] #curline = [r'\alg%sshort' % tmp] #curline = [r'Alg%d' % nb] #curline = [r'%.3s%d' % (entry.algId, nb)] data = entry.detERT(targetsOfInterest) evals = entry.detEvals(targetsOfInterest) if nb == 0: assert not isinstance(data, numpy.ndarray) data0 = data[:] # check if it is not an array for i, j in enumerate( data): # is j an appropriate identifier here? #if numpy.isnan(float(j)/bestalgdata[i]): # set_trace() # assign significance flag significance0vs1 = 0 if nb == 0: istat0 = 0 istat1 = 1 else: istat0 = 1 istat1 = 0 #set_trace() z, p = ranksums(rankdata[istat0, i], rankdata[istat1, i]) if (nbtests * p < 0.05 and z > 0 and not numpy.isinf(ertdata[istat0][i]) and z * (ertdata[istat1][i] - ertdata[istat0][i]) > 0): # z-value and ERT-ratio must agree significance0vs1 = -int( numpy.ceil(numpy.log10(nbtests * p))) if nbtests * p < 0.05 and z < 0 and z * ( ertdata[istat1][i] - ertdata[istat0][i]) > 0: significance0vs1 = int( numpy.ceil(numpy.log10(nbtests * p))) alignment = 'c' if i == len(data) - 1: # last element alignment = 'c|' if numpy.isinf(bestalgdata[i]): tableentry = ( r'\multicolumn{2}{@{}%s@{}}{\textbf{\textit{%s}}}' % (alignment, writeFEvals2(float(j), 2))) # TODO: is this the desired behaviour? else: # Formatting assert not numpy.isnan(float(j) / bestalgdata[i]) tmp = float(j) / bestalgdata[i] tableentry = writeFEvals2(tmp, 2) isBold = False if 11 < 3 and tmp <= 3: isBold = True if significance0vs1 > 0: isBold = True if tableentry.find('e') > -1: if isBold: tableentry = r'\textbf{%s}' % tableentry elif significance0vs1 < 0: tableentry = r'\textit{%s}' % tableentry tableentry = (r'\multicolumn{2}{@{}%s@{}}{%s}' % (alignment, tableentry)) else: tmp = tableentry.split('.', 1) if isBold: tmp = list(r'\textbf{%s}' % i for i in tmp) elif significance0vs1 < 0: tmp = list(r'\textit{%s}' % i for i in tmp) tableentry = ' & .'.join(tmp) if len(tmp) == 1: tableentry += '&' currankdata = numpy.power(evals[i], -1.) currankdata[numpy.isnan( currankdata )] = -entry.finalfunvals[numpy.isnan(currankdata)] if 11 < 3 and nb == 0: rankdata0.append(currankdata.copy()) addition = '' elif 11 < 3: #nb==1 z, p = ranksums(rankdata0[i], currankdata) tmp = '.' #addition = '' # Uncomment to gain space. Meanwhile it displays the worst case scenario if ((nbtests * p) < 0.05 and ((numpy.isinf(data0[i]) and numpy.isinf(j)) or z * (j - data0[i]) > 0) ): # z-value and ERT-ratio must agree nbstars = -numpy.ceil(numpy.log10(nbtests * p)) if z > 0: tmp = r'\uparrow' #* nbstars else: tmp = r'\downarrow' #* nbstars # print z, linebest[i], line1 if nbstars > 1: tmp += str(int(nbstars)) #addition = tmp # uncomment to gain space. addition = r'/' + tmp # Comment and uncomment line above to gain space #addition = tmp # Comment and uncomment line above to gain space superscript = '\uparrow' superscript = '' #if addition: #superscript = '.' z, p = ranksums(rankdatabest[i], currankdata) if ((nbtests * p) < 0.05 and ((numpy.isinf(bestalgdata[i]) and numpy.isinf(j)) or z * (j - bestalgdata[i]) > 0) ): # z-value and ERT-ratio must agree nbstars = -numpy.ceil(numpy.log10(nbtests * p)) #tmp = '\hspace{-.5ex}'.join(nbstars * [r'\star']) #set_trace() if z > 0: superscript = r'\uparrow' #* nbstars else: superscript = r'\downarrow' #* nbstars # print z, linebest[i], line1 if nbstars > 1: superscript += str(int(nbstars)) addition = '' if superscript or significance0vs1: s = '' if significance0vs1 > 0: s = '\star' if significance0vs1 > 1: s += str(significance0vs1) s = r'$^{' + s + superscript + r'}$' if tableentry.endswith('}'): tableentry = tableentry[:-1] + s + r'}' else: tableentry += s if 11 < 3 and (superscript or addition): isClosingBrace = False if tableentry.endswith('}'): isClosingBrace = True tableentry = tableentry[:-1] #tableentry += r'$^{' + superscript + '}_{' + addition + '}$' tableentry += r'$^{' + superscript + addition + '}$' if isClosingBrace: tableentry += '}' curline.append(tableentry) # Two cases: both tabular give an overfull hbox # AND generate a LaTeX Warning: Float too large for page by 16.9236pt on input line 421. (noisy) # OR generate a LaTeX Warning: Float too large for page by 33.57658pt on input line 421. (noisy) tmp = entry.evals[entry.evals[:, 0] <= targetf, 1:] try: tmp = tmp[0] curline.append('%d' % numpy.sum(numpy.isnan(tmp) == False)) except IndexError: curline.append('%d' % 0) curline.append('/%d' % entry.nbRuns()) table.append(curline[:]) extraeol.append('') extraeol[-1] = r'\hline' extraeol[-1] = '' outputfile = os.path.join(outputdir, 'cmptable_%02dD%s.tex' % (d, info)) spec = r'@{}c@{}|' + '*{%d}{@{}r@{}@{}l@{}}' % len( targetsOfInterest) + '|@{}r@{}@{}l@{}' res = r'\providecommand{\algzeroshort}{%s}' % alg0 + '\n' res += r'\providecommand{\algoneshort}{%s}' % alg1 + '\n' #res += tableLaTeXStar(table, width=r'0.45\textwidth', spec=spec, #extraeol=extraeol) res += tableLaTeX(table, spec=spec, extraeol=extraeol) f = open(outputfile, 'w') f.write(res) f.close() if verbose: print "Table written in %s" % outputfile
def main(dsList, _valuesOfInterest, outputdir, verbose=True): """From a DataSetList, returns a convergence and ERT figure vs dim.""" plt.rc("axes", labelsize=20, titlesize=24) plt.rc("xtick", labelsize=20) plt.rc("ytick", labelsize=20) plt.rc("font", size=20) plt.rc("legend", fontsize=20) dictFunc = dsList.dictByFunc() for func in dictFunc: dictFunc[func] = dictFunc[func].dictByDim() filename = os.path.join(outputdir, 'ppdata_f%d' % (func)) fig = plt.figure() #legend = [] line = [] valuesOfInterest = list(j[func] for j in _valuesOfInterest) valuesOfInterest.sort(reverse=True) for i in range(len(valuesOfInterest)): succ = [] unsucc = [] displaynumber = [] data = [] #Collect data that have the same function and different dimension. for dim in sorted(dictFunc[func]): tmp = generateData(dictFunc[func][dim][0], valuesOfInterest[i]) #data.append(numpy.append(dim, tmp)) if tmp[2] > 0: #Number of success is larger than 0 succ.append(numpy.append(dim, tmp)) if tmp[2] < dictFunc[func][dim][0].nbRuns(): displaynumber.append((dim, tmp[0], tmp[2])) else: unsucc.append(numpy.append(dim, tmp)) if succ: tmp = numpy.vstack(succ) #ERT plt.plot(tmp[:, 0], tmp[:, 1], figure=fig, color=colors[i], marker='o', markersize=20) #median plt.plot(tmp[:, 0], tmp[:, -1], figure=fig, color=colors[i], linestyle='', marker='+', markersize=30, markeredgewidth=5) # To have the legend displayed whatever happens with the data. plt.plot([], [], color=colors[i], label=' %+d' % (numpy.log10(valuesOfInterest[i]))) #Only for the last target function value... if unsucc: #set_trace() tmp = numpy.vstack(unsucc) plt.plot(tmp[:, 0], tmp[:, -2], figure=fig, color=colors[i], marker='x', markersize=20) if not bestalg.bestalgentries: bestalg.loadBBOB2009() bestalgdata = [] for d in dimsBBOB: entry = bestalg.bestalgentries[(d, func)] tmp = entry.ert[entry.target <= 1e-8] try: bestalgdata.append(tmp[0]) except IndexError: bestalgdata.append(None) plt.plot(dimsBBOB, bestalgdata, figure=fig, color='wheat', linewidth=10, zorder=-1) plt.plot(dimsBBOB, bestalgdata, figure=fig, ls='', marker='d', markersize=25, color='wheat', zorder=-1) if displaynumber: #displayed only for the smallest valuesOfInterest a = fig.gca() for j in displaynumber: plt.text(j[0], j[1] * 1.85, "%.0f" % j[2], axes=a, horizontalalignment="center", verticalalignment="bottom") if isBenchmarkinfosFound: title = funInfos[func] else: title = '' legend = func in (1, 24, 101, 130) beautify(fig, filename, title=title, legend=legend, fileFormat=figformat, labels=['', ''], scale=['log', 'log'], verbose=verbose) plt.close(fig) plt.rcdefaults()
def main(dictAlg, sortedAlgs, outputdir='.', verbose=True, function_targets_line=True): # [1, 13, 101] """Generate one table per func with results of multiple algorithms.""" """Difference with the first version: * numbers aligned using the decimal separator * premices for dispersion measure * significance test against best algorithm * table width... Takes ``targetsOfInterest`` from this file as "input argument" to compute the desired target values. ``targetsOfInterest`` might be configured via config. """ # TODO: method is long, terrible to read, split if possible if not bestalg.bestalgentries2009: bestalg.loadBBOB2009() # Sort data per dimension and function dictData = {} dsListperAlg = list(dictAlg[i] for i in sortedAlgs) for n, entries in enumerate(dsListperAlg): tmpdictdim = entries.dictByDim() for d in tmpdictdim: tmpdictfun = tmpdictdim[d].dictByFunc() for f in tmpdictfun: dictData.setdefault((d, f), {})[n] = tmpdictfun[f] nbtests = len(dictData) for df in dictData: # Generate one table per df # first update targets for each dimension-function pair if needed: targets = targetsOfInterest((df[1], df[0])) targetf = targets[-1] # best 2009 refalgentry = bestalg.bestalgentries2009[df] refalgert = refalgentry.detERT(targets) refalgevals = (refalgentry.detEvals((targetf, ))[0][0]) refalgnbruns = len(refalgevals) refalgnbsucc = numpy.sum(numpy.isnan(refalgevals) == False) # Process the data # The following variables will be lists of elements each corresponding # to an algorithm algnames = [] #algdata = [] algerts = [] algevals = [] algdisp = [] algnbsucc = [] algnbruns = [] algmedmaxevals = [] algmedfinalfunvals = [] algtestres = [] algentries = [] for n in sorted(dictData[df].keys()): entries = dictData[df][n] # the number of datasets for a given dimension and function (df) # should be strictly 1. TODO: find a way to warn # TODO: do this checking before... why wasn't it triggered by ppperprof? if len(entries) > 1: txt = ("There is more than a single entry associated with " "folder %s on %d-D f%d." % (sortedAlgs[n], df[0], df[1])) raise Exception(txt) entry = entries[0] algentries.append(entry) algnames.append(sortedAlgs[n]) evals = entry.detEvals(targets) #tmpdata = [] tmpdisp = [] tmpert = [] for i, e in enumerate(evals): succ = (numpy.isnan(e) == False) ec = e.copy() # note: here was the previous bug (changes made in e also appeared in evals !) ec[succ == False] = entry.maxevals[succ == False] ert = toolsstats.sp(ec, issuccessful=succ)[0] #tmpdata.append(ert/refalgert[i]) if succ.any(): tmp = toolsstats.drawSP(ec[succ], entry.maxevals[succ == False], [10, 50, 90], samplesize=samplesize)[0] tmpdisp.append((tmp[-1] - tmp[0])/2.) else: tmpdisp.append(numpy.nan) tmpert.append(ert) algerts.append(tmpert) algevals.append(evals) #algdata.append(tmpdata) algdisp.append(tmpdisp) algmedmaxevals.append(numpy.median(entry.maxevals)) algmedfinalfunvals.append(numpy.median(entry.finalfunvals)) #algmedmaxevals.append(numpy.median(entry.maxevals)/df[0]) #algmedfinalfunvals.append(numpy.median(entry.finalfunvals)) algtestres.append(significancetest(refalgentry, entry, targets)) # determine success probability for Df = 1e-8 e = entry.detEvals((targetf ,))[0] algnbsucc.append(numpy.sum(numpy.isnan(e) == False)) algnbruns.append(len(e)) # Process over all data # find best values... nalgs = len(dictData[df]) maxRank = 1 + numpy.floor(0.14 * nalgs) # number of algs to be displayed in bold isBoldArray = [] # Point out the best values algfinaldata = [] # Store median function values/median number of function evaluations tmptop = getTopIndicesOfColumns(algerts, maxRank=maxRank) for i, erts in enumerate(algerts): tmp = [] for j, ert in enumerate(erts): # algi targetj tmp.append(i in tmptop[j] or (nalgs > 7 and algerts[i][j] <= 3. * refalgert[j])) isBoldArray.append(tmp) algfinaldata.append((algmedfinalfunvals[i], algmedmaxevals[i])) # significance test of best given algorithm against all others best_alg_idx = numpy.array(algerts).argsort(0)[0, :] # indexed by target index significance_versus_others = significance_all_best_vs_other(algentries, targets, best_alg_idx)[0] # Create the table table = [] spec = r'@{}c@{}|*{%d}{@{\,}r@{}X@{\,}}|@{}r@{}@{}l@{}' % (len(targets)) # in case StrLeft not working: replaced c@{} with l@{ } spec = r'@{}c@{}|*{%d}{@{}r@{}X@{}}|@{}r@{}@{}l@{}' % (len(targets)) # in case StrLeft not working: replaced c@{} with l@{ } extraeol = [] # Generate header lines if with_table_heading: header = funInfos[df[1]] if funInfos else 'f%d' % df[1] table.append([r'\multicolumn{%d}{@{\,}c@{\,}}{{\textbf{%s}}}' % (2 * len(targets) + 2, header)]) extraeol.append('') if function_targets_line is True or (function_targets_line and df[1] in function_targets_line): if isinstance(targetsOfInterest, pproc.RunlengthBasedTargetValues): curline = [r'\#FEs/D'] for i in targetsOfInterest.labels(): curline.append(r'\multicolumn{2}{@{}c@{}}{%s}' % i) else: curline = [r'$\Delta f_\mathrm{opt}$'] for t in targets: curline.append(r'\multicolumn{2}{@{\,}X@{\,}}{%s}' % writeFEvals2(t, precision=1, isscientific=True)) # curline.append(r'\multicolumn{2}{@{\,}X@{}|}{%s}' # % writeFEvals2(targets[-1], precision=1, isscientific=True)) curline.append(r'\multicolumn{2}{@{}l@{}}{\#succ}') table.append(curline) extraeol.append(r'\hline') # extraeol.append(r'\hline\arrayrulecolor{tableShade}') curline = [r'ERT$_{\text{best}}$'] if with_table_heading else [r'\textbf{f%d}' % df[1]] if isinstance(targetsOfInterest, pproc.RunlengthBasedTargetValues): # write ftarget:fevals for i in xrange(len(refalgert[:-1])): temp="%.1e" %targetsOfInterest((df[1], df[0]))[i] if temp[-2]=="0": temp=temp[:-2]+temp[-1] curline.append(r'\multicolumn{2}{@{}c@{}}{\textit{%s}:%s \quad}' % (temp,writeFEvalsMaxPrec(refalgert[i], 2))) temp="%.1e" %targetsOfInterest((df[1], df[0]))[-1] if temp[-2]=="0": temp=temp[:-2]+temp[-1] curline.append(r'\multicolumn{2}{@{}c@{}|}{\textit{%s}:%s }' % (temp,writeFEvalsMaxPrec(refalgert[-1], 2))) else: # write #fevals of the reference alg for i in refalgert[:-1]: curline.append(r'\multicolumn{2}{@{}c@{}}{%s \quad}' % writeFEvalsMaxPrec(i, 2)) curline.append(r'\multicolumn{2}{@{}c@{}|}{%s}' % writeFEvalsMaxPrec(refalgert[-1], 2)) # write the success ratio for the reference alg tmp2 = numpy.sum(numpy.isnan(refalgevals) == False) # count the nb of success curline.append('%d' % (tmp2)) if tmp2 > 0: curline.append('/%d' % len(refalgevals)) table.append(curline[:]) extraeol.append('') #for i, gna in enumerate(zip((1, 2, 3), ('bla', 'blo', 'bli'))): #print i, gna, gno #set_trace() # Format data #if df == (5, 17): #set_trace() header = r'\providecommand{\ntables}{7}' for i, alg in enumerate(algnames): #algname, entries, irs, line, line2, succ, runs, testres1alg in zip(algnames, #data, dispersion, isBoldArray, isItalArray, nbsucc, nbruns, testres): commandname = r'\alg%stables' % numtotext(i) # header += r'\providecommand{%s}{{%s}{}}' % (commandname, str_to_latex(strip_pathname(alg))) header += r'\providecommand{%s}{\StrLeft{%s}{\ntables}}' % (commandname, str_to_latex(strip_pathname2(alg))) curline = [commandname + r'\hspace*{\fill}'] # each list element becomes a &-separated table entry? for j, tmp in enumerate(zip(algerts[i], algdisp[i], # j is target index isBoldArray[i], algtestres[i])): ert, dispersion, isBold, testres = tmp alignment = '@{\,}X@{\,}' if j == len(algerts[i]) - 1: alignment = '@{\,}X@{\,}|' data = ert/refalgert[j] # write star for significance against all other algorithms str_significance_subsup = '' if (len(best_alg_idx) > 0 and len(significance_versus_others) > 0 and i == best_alg_idx[j] and nbtests * significance_versus_others[j][1] < 0.05): logp = -numpy.ceil(numpy.log10(nbtests * significance_versus_others[j][1])) str_significance_subsup = r"^{%s%s}" % (significance_vs_others_symbol, str(int(logp)) if logp > 1 else '') # moved out of the above else: this was a bug!? z, p = testres if (nbtests * p) < 0.05 and data < 1. and z < 0.: if not numpy.isinf(refalgert[j]): tmpevals = algevals[i][j].copy() tmpevals[numpy.isnan(tmpevals)] = algentries[i].maxevals[numpy.isnan(tmpevals)] bestevals = refalgentry.detEvals(targets) bestevals, bestalgalg = (bestevals[0][0], bestevals[1][0]) bestevals[numpy.isnan(bestevals)] = refalgentry.maxevals[bestalgalg][numpy.isnan(bestevals)] tmpevals = numpy.array(sorted(tmpevals))[0:min(len(tmpevals), len(bestevals))] bestevals = numpy.array(sorted(bestevals))[0:min(len(tmpevals), len(bestevals))] #The conditions are now that ERT < ERT_best and # all(sorted(FEvals_best) > sorted(FEvals_current)). if numpy.isinf(refalgert[j]) or all(tmpevals < bestevals): nbstars = -numpy.ceil(numpy.log10(nbtests * p)) # tmp2[-1] += r'$^{%s}$' % superscript str_significance_subsup += r'_{%s%s}' % (significance_vs_ref_symbol, str(int(nbstars)) if nbstars > 1 else '') if str_significance_subsup: str_significance_subsup = '$%s$' % str_significance_subsup # format number in variable data if numpy.isnan(data): curline.append(r'\multicolumn{2}{%s}{.}' % alignment) else: if numpy.isinf(refalgert[j]): curline.append(r'\multicolumn{2}{%s}{\textbf{%s}\mbox{\tiny (%s)}%s}' % (alignment, writeFEvalsMaxPrec(algerts[i][j], 2), writeFEvalsMaxPrec(dispersion, precdispersion), str_significance_subsup)) continue tmp = writeFEvalsMaxPrec(data, precfloat, maxfloatrepr=maxfloatrepr) if data >= maxfloatrepr or data < 0.01: # either inf or scientific notation if numpy.isinf(data) and j == len(algerts[i]) - 1: tmp += r'\,\textit{%s}' % writeFEvalsMaxPrec(algfinaldata[i][1], 0, maxfloatrepr=maxfloatrepr) else: tmp = writeFEvalsMaxPrec(data, precscien, maxfloatrepr=data) if isBold: tmp = r'\textbf{%s}' % tmp if not numpy.isnan(dispersion): tmpdisp = dispersion/refalgert[j] if tmpdisp >= maxfloatrepr or tmpdisp < 0.005: # TODO: hack tmpdisp = writeFEvalsMaxPrec(tmpdisp, precdispersion, maxfloatrepr=tmpdisp) else: tmpdisp = writeFEvalsMaxPrec(tmpdisp, precdispersion, maxfloatrepr=maxfloatrepr) tmp += r'\mbox{\tiny (%s)}' % tmpdisp curline.append(r'\multicolumn{2}{%s}{%s%s}' % (alignment, tmp, str_significance_subsup)) else: tmp2 = tmp.split('.', 1) if len(tmp2) < 2: tmp2.append('') else: tmp2[-1] = '.' + tmp2[-1] if isBold: tmp3 = [] for k in tmp2: tmp3.append(r'\textbf{%s}' % k) tmp2 = tmp3 if not numpy.isnan(dispersion): tmpdisp = dispersion/refalgert[j] if tmpdisp >= maxfloatrepr or tmpdisp < 0.01: tmpdisp = writeFEvalsMaxPrec(tmpdisp, precdispersion, maxfloatrepr=tmpdisp) else: tmpdisp = writeFEvalsMaxPrec(tmpdisp, precdispersion, maxfloatrepr=maxfloatrepr) tmp2[-1] += (r'\mbox{\tiny (%s)}' % (tmpdisp)) tmp2[-1] += str_significance_subsup curline.extend(tmp2) curline.append('%d' % algnbsucc[i]) curline.append('/%d' % algnbruns[i]) table.append(curline) extraeol.append('') # Write table res = tableXLaTeX(table, spec=spec, extraeol=extraeol) try: filename = os.path.join(outputdir, 'pptables_f%03d_%02dD.tex' % (df[1], df[0])) f = open(filename, 'w') f.write(header + '\n') f.write(res) if verbose: print 'Wrote table in %s' % filename except: raise else: f.close()
def main(dictAlg, sortedAlgs, outputdir='.', verbose=True, function_targets_line=True): # [1, 13, 101] """Generate one table per func with results of multiple algorithms.""" """Difference with the first version: * numbers aligned using the decimal separator * premices for dispersion measure * significance test against best algorithm * table width... Takes ``targetsOfInterest`` from this file as "input argument" to compute the desired target values. ``targetsOfInterest`` might be configured via config. """ # TODO: method is long, terrible to read, split if possible if not bestalg.bestalgentries2009: bestalg.loadBBOB2009() # Sort data per dimension and function dictData = {} dsListperAlg = list(dictAlg[i] for i in sortedAlgs) for n, entries in enumerate(dsListperAlg): tmpdictdim = entries.dictByDim() for d in tmpdictdim: tmpdictfun = tmpdictdim[d].dictByFunc() for f in tmpdictfun: dictData.setdefault((d, f), {})[n] = tmpdictfun[f] nbtests = len(dictData) for df in dictData: # Generate one table per df # first update targets for each dimension-function pair if needed: targets = targetsOfInterest((df[1], df[0])) targetf = targets[-1] # best 2009 refalgentry = bestalg.bestalgentries2009[df] refalgert = refalgentry.detERT(targets) refalgevals = (refalgentry.detEvals((targetf, ))[0][0]) refalgnbruns = len(refalgevals) refalgnbsucc = numpy.sum(numpy.isnan(refalgevals) == False) # Process the data # The following variables will be lists of elements each corresponding # to an algorithm algnames = [] #algdata = [] algerts = [] algevals = [] algdisp = [] algnbsucc = [] algnbruns = [] algmedmaxevals = [] algmedfinalfunvals = [] algtestres = [] algentries = [] for n in sorted(dictData[df].keys()): entries = dictData[df][n] # the number of datasets for a given dimension and function (df) # should be strictly 1. TODO: find a way to warn # TODO: do this checking before... why wasn't it triggered by ppperprof? if len(entries) > 1: print entries txt = ("There is more than a single entry associated with " "folder %s on %d-D f%d." % (sortedAlgs[n], df[0], df[1])) raise Exception(txt) entry = entries[0] algentries.append(entry) algnames.append(sortedAlgs[n]) evals = entry.detEvals(targets) #tmpdata = [] tmpdisp = [] tmpert = [] for i, e in enumerate(evals): succ = (numpy.isnan(e) == False) ec = e.copy( ) # note: here was the previous bug (changes made in e also appeared in evals !) ec[succ == False] = entry.maxevals[succ == False] ert = toolsstats.sp(ec, issuccessful=succ)[0] #tmpdata.append(ert/refalgert[i]) if succ.any(): tmp = toolsstats.drawSP(ec[succ], entry.maxevals[succ == False], [10, 50, 90], samplesize=samplesize)[0] tmpdisp.append((tmp[-1] - tmp[0]) / 2.) else: tmpdisp.append(numpy.nan) tmpert.append(ert) algerts.append(tmpert) algevals.append(evals) #algdata.append(tmpdata) algdisp.append(tmpdisp) algmedmaxevals.append(numpy.median(entry.maxevals)) algmedfinalfunvals.append(numpy.median(entry.finalfunvals)) #algmedmaxevals.append(numpy.median(entry.maxevals)/df[0]) #algmedfinalfunvals.append(numpy.median(entry.finalfunvals)) algtestres.append(significancetest(refalgentry, entry, targets)) # determine success probability for Df = 1e-8 e = entry.detEvals((targetf, ))[0] algnbsucc.append(numpy.sum(numpy.isnan(e) == False)) algnbruns.append(len(e)) # Process over all data # find best values... nalgs = len(dictData[df]) maxRank = 1 + numpy.floor( 0.14 * nalgs) # number of algs to be displayed in bold isBoldArray = [] # Point out the best values algfinaldata = [ ] # Store median function values/median number of function evaluations tmptop = getTopIndicesOfColumns(algerts, maxRank=maxRank) for i, erts in enumerate(algerts): tmp = [] for j, ert in enumerate(erts): # algi targetj tmp.append(i in tmptop[j] or (nalgs > 7 and algerts[i][j] <= 3. * refalgert[j])) isBoldArray.append(tmp) algfinaldata.append((algmedfinalfunvals[i], algmedmaxevals[i])) # significance test of best given algorithm against all others best_alg_idx = numpy.array(algerts).argsort(0)[ 0, :] # indexed by target index significance_versus_others = significance_all_best_vs_other( algentries, targets, best_alg_idx)[0] # Create the table table = [] tableHtml = [] spec = r'@{}c@{}|*{%d}{@{\,}r@{}X@{\,}}|@{}r@{}@{}l@{}' % ( len(targets) ) # in case StrLeft not working: replaced c@{} with l@{ } spec = r'@{}c@{}|*{%d}{@{}r@{}X@{}}|@{}r@{}@{}l@{}' % ( len(targets) ) # in case StrLeft not working: replaced c@{} with l@{ } extraeol = [] # Generate header lines if with_table_heading: header = funInfos[df[1]] if funInfos else 'f%d' % df[1] table.append([ r'\multicolumn{%d}{@{\,}c@{\,}}{{\textbf{%s}}}' % (2 * len(targets) + 2, header) ]) extraeol.append('') if function_targets_line is True or (function_targets_line and df[1] in function_targets_line): if isinstance(targetsOfInterest, pproc.RunlengthBasedTargetValues): curline = [r'\#FEs/D'] curlineHtml = ['<thead>\n<tr>\n<th>#FEs/D<br>REPLACEH</th>\n'] counter = 1 for i in targetsOfInterest.labels(): curline.append(r'\multicolumn{2}{@{}c@{}}{%s}' % i) curlineHtml.append('<td>%s<br>REPLACE%d</td>\n' % (i, counter)) counter += 1 else: curline = [r'$\Delta f_\mathrm{opt}$'] curlineHtml = [ '<thead>\n<tr>\n<th>Δ f<sub>opt</sub><br>REPLACEH</th>\n' ] counter = 1 for t in targets: curline.append( r'\multicolumn{2}{@{\,}X@{\,}}{%s}' % writeFEvals2(t, precision=1, isscientific=True)) curlineHtml.append( '<td>%s<br>REPLACE%d</td>\n' % (writeFEvals2( t, precision=1, isscientific=True), counter)) counter += 1 # curline.append(r'\multicolumn{2}{@{\,}X@{}|}{%s}' # % writeFEvals2(targets[-1], precision=1, isscientific=True)) curline.append(r'\multicolumn{2}{@{}l@{}}{\#succ}') curlineHtml.append('<td>#succ<br>REPLACEF</td>\n</tr>\n</thead>\n') table.append(curline) extraeol.append(r'\hline') # extraeol.append(r'\hline\arrayrulecolor{tableShade}') curline = [r'ERT$_{\text{best}}$' ] if with_table_heading else [r'\textbf{f%d}' % df[1]] replaceValue = 'ERT<sub>best</sub>' if with_table_heading else ( '<b>f%d</b>' % df[1]) curlineHtml = [ item.replace('REPLACEH', replaceValue) for item in curlineHtml ] if isinstance(targetsOfInterest, pproc.RunlengthBasedTargetValues): # write ftarget:fevals counter = 1 for i in xrange(len(refalgert[:-1])): temp = "%.1e" % targetsOfInterest((df[1], df[0]))[i] if temp[-2] == "0": temp = temp[:-2] + temp[-1] curline.append( r'\multicolumn{2}{@{}c@{}}{\textit{%s}:%s \quad}' % (temp, writeFEvalsMaxPrec(refalgert[i], 2))) replaceValue = '<i>%s</i>:%s' % ( temp, writeFEvalsMaxPrec(refalgert[i], 2)) curlineHtml = [ item.replace('REPLACE%d' % counter, replaceValue) for item in curlineHtml ] counter += 1 temp = "%.1e" % targetsOfInterest((df[1], df[0]))[-1] if temp[-2] == "0": temp = temp[:-2] + temp[-1] curline.append(r'\multicolumn{2}{@{}c@{}|}{\textit{%s}:%s }' % (temp, writeFEvalsMaxPrec(refalgert[-1], 2))) replaceValue = '<i>%s</i>:%s' % ( temp, writeFEvalsMaxPrec(refalgert[-1], 2)) curlineHtml = [ item.replace('REPLACE%d' % counter, replaceValue) for item in curlineHtml ] else: # write #fevals of the reference alg counter = 1 for i in refalgert[:-1]: curline.append(r'\multicolumn{2}{@{}c@{}}{%s \quad}' % writeFEvalsMaxPrec(i, 2)) curlineHtml = [ item.replace('REPLACE%d' % counter, writeFEvalsMaxPrec(i, 2)) for item in curlineHtml ] counter += 1 curline.append(r'\multicolumn{2}{@{}c@{}|}{%s}' % writeFEvalsMaxPrec(refalgert[-1], 2)) curlineHtml = [ item.replace('REPLACE%d' % counter, writeFEvalsMaxPrec(refalgert[-1], 2)) for item in curlineHtml ] # write the success ratio for the reference alg tmp2 = numpy.sum( numpy.isnan(refalgevals) == False) # count the nb of success curline.append('%d' % (tmp2)) if tmp2 > 0: curline.append('/%d' % len(refalgevals)) replaceValue = '%d/%d' % (tmp2, len(refalgevals)) else: replaceValue = '%d' % tmp2 curlineHtml = [ item.replace('REPLACEF', replaceValue) for item in curlineHtml ] table.append(curline[:]) tableHtml.extend(curlineHtml[:]) tableHtml.append('<tbody>\n') extraeol.append('') #for i, gna in enumerate(zip((1, 2, 3), ('bla', 'blo', 'bli'))): #print i, gna, gno #set_trace() # Format data #if df == (5, 17): #set_trace() header = r'\providecommand{\ntables}{7}' for i, alg in enumerate(algnames): tableHtml.append('<tr>\n') #algname, entries, irs, line, line2, succ, runs, testres1alg in zip(algnames, #data, dispersion, isBoldArray, isItalArray, nbsucc, nbruns, testres): commandname = r'\alg%stables' % numtotext(i) # header += r'\providecommand{%s}{{%s}{}}' % (commandname, str_to_latex(strip_pathname(alg))) header += r'\providecommand{%s}{\StrLeft{%s}{\ntables}}' % ( commandname, str_to_latex(strip_pathname1(alg))) curline = [ commandname + r'\hspace*{\fill}' ] # each list element becomes a &-separated table entry? curlineHtml = [ '<th>%s</th>\n' % str_to_latex(strip_pathname1(alg)) ] for j, tmp in enumerate( zip( algerts[i], algdisp[i], # j is target index isBoldArray[i], algtestres[i])): ert, dispersion, isBold, testres = tmp alignment = '@{\,}X@{\,}' if j == len(algerts[i]) - 1: alignment = '@{\,}X@{\,}|' data = ert / refalgert[j] # write star for significance against all other algorithms str_significance_subsup = '' str_significance_subsup_html = '' if (len(best_alg_idx) > 0 and len(significance_versus_others) > 0 and i == best_alg_idx[j] and nbtests * significance_versus_others[j][1] < 0.05): logp = -numpy.ceil( numpy.log10( nbtests * significance_versus_others[j][1])) logp = numpy.min( (9, logp)) # not messing up the format and handling inf str_significance_subsup = r"^{%s%s}" % ( significance_vs_others_symbol, str(int(logp)) if logp > 1 else '') str_significance_subsup_html = '<sup>%s%s</sup>' % ( significance_vs_others_symbol_html, str(int(logp)) if logp > 1 else '') # moved out of the above else: this was a bug!? z, p = testres if (nbtests * p) < 0.05 and data < 1. and z < 0.: if not numpy.isinf(refalgert[j]): tmpevals = algevals[i][j].copy() tmpevals[numpy.isnan(tmpevals)] = algentries[ i].maxevals[numpy.isnan(tmpevals)] bestevals = refalgentry.detEvals(targets) bestevals, bestalgalg = (bestevals[0][0], bestevals[1][0]) bestevals[numpy.isnan( bestevals)] = refalgentry.maxevals[bestalgalg][ numpy.isnan(bestevals)] tmpevals = numpy.array(sorted( tmpevals))[0:min(len(tmpevals), len(bestevals))] bestevals = numpy.array(sorted( bestevals))[0:min(len(tmpevals), len(bestevals))] #The conditions are now that ERT < ERT_best and # all(sorted(FEvals_best) > sorted(FEvals_current)). if numpy.isinf(refalgert[j]) or all(tmpevals < bestevals): nbstars = -numpy.ceil(numpy.log10(nbtests * p)) # tmp2[-1] += r'$^{%s}$' % superscript str_significance_subsup += r'_{%s%s}' % ( significance_vs_ref_symbol, str(int(nbstars)) if nbstars > 1 else '') str_significance_subsup_html = '<sub>%s%s</sub>' % ( significance_vs_ref_symbol_html, str(int(nbstars)) if nbstars > 1 else '') if str_significance_subsup: str_significance_subsup = '$%s$' % str_significance_subsup # format number in variable data if numpy.isnan(data): curline.append(r'\multicolumn{2}{%s}{.}' % alignment) else: if numpy.isinf(refalgert[j]): curline.append( r'\multicolumn{2}{%s}{\textbf{%s}\mbox{\tiny (%s)}%s}' % (alignment, writeFEvalsMaxPrec(algerts[i][j], 2), writeFEvalsMaxPrec(dispersion, precdispersion), str_significance_subsup)) curlineHtml.append( '<td sorttable_customkey=\"%f\"><b>%s</b> (%s)%s</td>\n' % (algerts[i][j], writeFEvalsMaxPrec(algerts[i][j], 2), writeFEvalsMaxPrec(dispersion, precdispersion), str_significance_subsup_html)) continue tmp = writeFEvalsMaxPrec(data, precfloat, maxfloatrepr=maxfloatrepr) tmpHtml = writeFEvalsMaxPrec(data, precfloat, maxfloatrepr=maxfloatrepr) sortKey = data if data >= maxfloatrepr or data < 0.01: # either inf or scientific notation if numpy.isinf(data) and j == len(algerts[i]) - 1: tmp += r'\,\textit{%s}' % writeFEvalsMaxPrec( algfinaldata[i][1], 0, maxfloatrepr=maxfloatrepr) tmpHtml += '<i>%s</i>' % writeFEvalsMaxPrec( algfinaldata[i][1], 0, maxfloatrepr=maxfloatrepr) sortKey = algfinaldata[i][1] else: tmp = writeFEvalsMaxPrec(data, precscien, maxfloatrepr=data) if isBold: tmpHtml = '<b>%s</b>' % tmp tmp = r'\textbf{%s}' % tmp if not numpy.isnan(dispersion): tmpdisp = dispersion / refalgert[j] if tmpdisp >= maxfloatrepr or tmpdisp < 0.005: # TODO: hack tmpdisp = writeFEvalsMaxPrec( tmpdisp, precdispersion, maxfloatrepr=tmpdisp) else: tmpdisp = writeFEvalsMaxPrec( tmpdisp, precdispersion, maxfloatrepr=maxfloatrepr) tmp += r'\mbox{\tiny (%s)}' % tmpdisp tmpHtml += ' (%s)' % tmpdisp curline.append( r'\multicolumn{2}{%s}{%s%s}' % (alignment, tmp, str_significance_subsup)) tmpHtml = tmpHtml.replace('$\infty$', '∞') if (numpy.isinf(sortKey)): sortKey = sys.maxint curlineHtml.append( '<td sorttable_customkey=\"%f\">%s%s</td>' % (sortKey, tmpHtml, str_significance_subsup_html)) else: tmp2 = tmp.split('.', 1) if len(tmp2) < 2: tmp2.append('') else: tmp2[-1] = '.' + tmp2[-1] if isBold: tmp3 = [] tmp3html = [] for k in tmp2: tmp3.append(r'\textbf{%s}' % k) tmp3html.append('<b>%s</b>' % k) tmp2 = tmp3 tmp2html = tmp3html else: tmp2html = [] tmp2html.extend(tmp2) if not numpy.isnan(dispersion): tmpdisp = dispersion / refalgert[j] if tmpdisp >= maxfloatrepr or tmpdisp < 0.01: tmpdisp = writeFEvalsMaxPrec( tmpdisp, precdispersion, maxfloatrepr=tmpdisp) else: tmpdisp = writeFEvalsMaxPrec( tmpdisp, precdispersion, maxfloatrepr=maxfloatrepr) tmp2[-1] += (r'\mbox{\tiny (%s)}' % (tmpdisp)) tmp2html[-1] += ' (%s)' % tmpdisp tmp2[-1] += str_significance_subsup tmp2html[-1] += str_significance_subsup_html curline.extend(tmp2) tmp2html = ("").join(str(item) for item in tmp2html) tmp2html = tmp2html.replace('$\infty$', '∞') curlineHtml.append( '<td sorttable_customkey=\"%f\">%s</td>' % (data, tmp2html)) curline.append('%d' % algnbsucc[i]) curline.append('/%d' % algnbruns[i]) table.append(curline) curlineHtml.append('<td sorttable_customkey=\"%d\">%d/%d</td>\n' % (algnbsucc[i], algnbsucc[i], algnbruns[i])) tableHtml.extend(curlineHtml[:]) extraeol.append('') # Write table res = tableXLaTeX(table, spec=spec, extraeol=extraeol) try: filename = os.path.join( outputdir, 'pptables_f%03d_%02dD.tex' % (df[1], df[0])) f = open(filename, 'w') f.write(header + '\n') f.write(res) res = ("").join(str(item) for item in tableHtml) res = '\n<table class=\"sortable\" style=\"width:800px \">\n%s</table>\n<p/>\n' % res if df[0] in (5, 20): filename = os.path.join( outputdir, genericsettings.many_algorithm_file_name + '.html') lines = [] with open(filename) as infile: for line in infile: if '<!--' + 'pptablesf%03d%02dDHtml' % ( df[1], df[0]) + '-->' in line: lines.append(res) lines.append(line) with open(filename, 'w') as outfile: for line in lines: outfile.write(line) if verbose: print 'Wrote table in %s' % filename except: raise else: f.close()
def main(dsList0, dsList1, dimsOfInterest, outputdir, info='', verbose=True): """One table per dimension, modified to fit in 1 page per table.""" #TODO: method is long, split if possible dictDim0 = dsList0.dictByDim() dictDim1 = dsList1.dictByDim() alg0 = set(i[0] for i in dsList0.dictByAlg().keys()).pop()[0:3] alg1 = set(i[0] for i in dsList1.dictByAlg().keys()).pop()[0:3] open(os.path.join(outputdir, 'bbob_pproc_commands.tex'), 'a').write( r'\providecommand{\algorithmAshort}{%s}' % writeLabels(alg0) + '\n' + r'\providecommand{\algorithmBshort}{%s}' % writeLabels(alg1) + '\n') if info: info = '_' + info dims = set.intersection(set(dictDim0.keys()), set(dictDim1.keys())) if not bestalg.bestalgentries2009: bestalg.loadBBOB2009() header = [] if isinstance(targetsOfInterest, pproc.RunlengthBasedTargetValues): header = [r'\#FEs/D'] for label in targetsOfInterest.labels(): header.append(r'\multicolumn{2}{@{}c@{}}{%s}' % label) else: header = [r'$\Delta f_\mathrm{opt}$'] for label in targetsOfInterest.labels(): header.append(r'\multicolumn{2}{@{\,}c@{\,}}{%s}' % label) header.append(r'\multicolumn{2}{@{}l@{}}{\#succ}') for d in dimsOfInterest: # TODO set as input arguments table = [header] extraeol = [r'\hline'] try: dictFunc0 = dictDim0[d].dictByFunc() dictFunc1 = dictDim1[d].dictByFunc() except KeyError: continue funcs = set.union(set(dictFunc0.keys()), set(dictFunc1.keys())) nbtests = len(funcs) * 2. #len(dimsOfInterest) for f in sorted(funcs): targets = targetsOfInterest((f, d)) targetf = targets[-1] bestalgentry = bestalg.bestalgentries2009[(d, f)] curline = [r'${\bf f_{%d}}$' % f] bestalgdata = bestalgentry.detERT(targets) bestalgevals, bestalgalgs = bestalgentry.detEvals(targets) if isinstance(targetsOfInterest, pproc.RunlengthBasedTargetValues): # write ftarget:fevals for i in xrange(len(bestalgdata[:-1])): temp = "%.1e" % targetsOfInterest((f, d))[i] if temp[-2] == "0": temp = temp[:-2] + temp[-1] curline.append( r'\multicolumn{2}{@{}c@{}}{\textit{%s}:%s \quad}' % (temp, writeFEvalsMaxPrec(bestalgdata[i], 2))) temp = "%.1e" % targetsOfInterest((f, d))[-1] if temp[-2] == "0": temp = temp[:-2] + temp[-1] curline.append(r'\multicolumn{2}{@{}c@{}|}{\textit{%s}:%s }' % (temp, writeFEvalsMaxPrec(bestalgdata[-1], 2))) else: # write #fevals of the reference alg for i in bestalgdata[:-1]: curline.append(r'\multicolumn{2}{@{}c@{}}{%s \quad}' % writeFEvalsMaxPrec(i, 2)) curline.append(r'\multicolumn{2}{@{}c@{}|}{%s}' % writeFEvalsMaxPrec(bestalgdata[-1], 2)) tmp = bestalgentry.detEvals([targetf])[0][0] tmp2 = numpy.sum(numpy.isnan(tmp) == False) curline.append('%d' % (tmp2)) if tmp2 > 0: curline.append('/%d' % len(tmp)) table.append(curline[:]) extraeol.append('') rankdata0 = [] # never used # generate all data from ranksum test entries = [] ertdata = {} for nb, dsList in enumerate((dictFunc0, dictFunc1)): try: entry = dsList[f][ 0] # take the first DataSet, there should be only one? except KeyError: warnings.warn('data missing for data set ' + str(nb) + ' and function ' + str(f)) print('*** Warning: data missing for data set ' + str(nb) + ' and function ' + str(f) + '***') continue # TODO: problem here! ertdata[nb] = entry.detERT(targets) entries.append(entry) for _t in ertdata.values(): for _tt in _t: if _tt is None: raise ValueError if len(entries) < 2: # funcion not available for *both* algorithms continue # TODO: check which one is missing and make sure that what is there is displayed properly in the following testres0vs1 = significancetest(entries[0], entries[1], targets) testresbestvs1 = significancetest(bestalgentry, entries[1], targets) testresbestvs0 = significancetest(bestalgentry, entries[0], targets) for nb, entry in enumerate(entries): if nb == 0: curline = [r'1:\:\algorithmAshort\hspace*{\fill}'] else: curline = [r'2:\:\algorithmBshort\hspace*{\fill}'] #data = entry.detERT(targetsOfInterest) dispersion = [] data = [] evals = entry.detEvals(targets) for i in evals: succ = (numpy.isnan(i) == False) tmp = i.copy() tmp[succ == False] = entry.maxevals[numpy.isnan(i)] #set_trace() data.append(toolsstats.sp(tmp, issuccessful=succ)[0]) #if not any(succ): #set_trace() if any(succ): tmp2 = toolsstats.drawSP(tmp[succ], tmp[succ == False], (10, 50, 90), samplesize)[0] dispersion.append((tmp2[-1] - tmp2[0]) / 2.) else: dispersion.append(None) if nb == 0: assert not isinstance(data, numpy.ndarray) data0 = data[:] # TODO: check if it is not an array, it's never used anyway? for i, dati in enumerate(data): z, p = testres0vs1[ i] # TODO: there is something with the sign that I don't get # assign significance flag, which is the -log10(p) significance0vs1 = 0 if nb != 0: z = -z # the test is symmetric if nbtests * p < 0.05 and z > 0: significance0vs1 = -int( numpy.ceil(numpy.log10(min([ 1.0, nbtests * p ])))) # this is the larger the more significant isBold = significance0vs1 > 0 alignment = 'c' if i == len(data) - 1: # last element alignment = 'c|' if numpy.isinf( bestalgdata[i] ): # if the 2009 best did not solve the problem tmp = writeFEvalsMaxPrec(float(dati), 2) if not numpy.isinf(dati): tmp = r'\textit{%s}' % (tmp) if isBold: tmp = r'\textbf{%s}' % tmp if dispersion[i] and numpy.isfinite(dispersion[i]): tmp += r'${\scriptscriptstyle (%s)}$' % writeFEvalsMaxPrec( dispersion[i], 1) tableentry = (r'\multicolumn{2}{@{}%s@{}}{%s}' % (alignment, tmp)) else: # Formatting tmp = float(dati) / bestalgdata[i] assert not numpy.isnan(tmp) isscientific = False if tmp >= 1000: isscientific = True tableentry = writeFEvals2(tmp, 2, isscientific=isscientific) tableentry = writeFEvalsMaxPrec(tmp, 2) if numpy.isinf(tmp) and i == len(data) - 1: tableentry = ( tableentry + r'\textit{%s}' % writeFEvals2(numpy.median(entry.maxevals), 2)) if isBold: tableentry = r'\textbf{%s}' % tableentry elif 11 < 3 and significance0vs1 < 0: # cave: negative significance has no meaning anymore tableentry = r'\textit{%s}' % tableentry if dispersion[i] and numpy.isfinite( dispersion[i] / bestalgdata[i]): tableentry += r'${\scriptscriptstyle (%s)}$' % writeFEvalsMaxPrec( dispersion[i] / bestalgdata[i], 1) tableentry = (r'\multicolumn{2}{@{}%s@{}}{%s}' % (alignment, tableentry)) elif tableentry.find('e') > -1 or (numpy.isinf(tmp) and i != len(data) - 1): if isBold: tableentry = r'\textbf{%s}' % tableentry elif 11 < 3 and significance0vs1 < 0: tableentry = r'\textit{%s}' % tableentry if dispersion[i] and numpy.isfinite( dispersion[i] / bestalgdata[i]): tableentry += r'${\scriptscriptstyle (%s)}$' % writeFEvalsMaxPrec( dispersion[i] / bestalgdata[i], 1) tableentry = (r'\multicolumn{2}{@{}%s@{}}{%s}' % (alignment, tableentry)) else: tmp = tableentry.split('.', 1) if isBold: tmp = list(r'\textbf{%s}' % i for i in tmp) elif 11 < 3 and significance0vs1 < 0: tmp = list(r'\textit{%s}' % i for i in tmp) tableentry = ' & .'.join(tmp) if len(tmp) == 1: tableentry += '&' if dispersion[i] and numpy.isfinite( dispersion[i] / bestalgdata[i]): tableentry += r'${\scriptscriptstyle (%s)}$' % writeFEvalsMaxPrec( dispersion[i] / bestalgdata[i], 1) superscript = '' if nb == 0: z, p = testresbestvs0[i] else: z, p = testresbestvs1[i] #The conditions are now that ERT < ERT_best if ((nbtests * p) < 0.05 and dati - bestalgdata[i] < 0. and z < 0.): nbstars = -numpy.ceil(numpy.log10(nbtests * p)) #tmp = '\hspace{-.5ex}'.join(nbstars * [r'\star']) if z > 0: superscript = r'\uparrow' #* nbstars else: superscript = r'\downarrow' #* nbstars # print z, linebest[i], line1 if nbstars > 1: superscript += str(int(nbstars)) if superscript or significance0vs1: s = '' if significance0vs1 > 0: s = '\star' if significance0vs1 > 1: s += str(significance0vs1) s = r'$^{' + s + superscript + r'}$' if tableentry.endswith('}'): tableentry = tableentry[:-1] + s + r'}' else: tableentry += s curline.append(tableentry) #curline.append(tableentry) #if dispersion[i] is None or numpy.isinf(bestalgdata[i]): #curline.append('') #else: #tmp = writeFEvalsMaxPrec(dispersion[i]/bestalgdata[i], 2) #curline.append('(%s)' % tmp) tmp = entry.evals[entry.evals[:, 0] <= targetf, 1:] try: tmp = tmp[0] curline.append('%d' % numpy.sum(numpy.isnan(tmp) == False)) except IndexError: curline.append('%d' % 0) curline.append('/%d' % entry.nbRuns()) table.append(curline[:]) extraeol.append('') extraeol[-1] = r'\hline' extraeol[-1] = '' outputfile = os.path.join(outputdir, 'pptable2_%02dD%s.tex' % (d, info)) spec = r'@{}c@{}|' + '*{%d}{@{}r@{}@{}l@{}}' % len( targetsOfInterest) + '|@{}r@{}@{}l@{}' res = r'\providecommand{\algorithmAshort}{%s}' % writeLabels( alg0) + '\n' res += r'\providecommand{\algorithmBshort}{%s}' % writeLabels( alg1) + '\n' # open(os.path.join(outputdir, 'bbob_pproc_commands.tex'), 'a').write(res) #res += tableLaTeXStar(table, width=r'0.45\textwidth', spec=spec, #extraeol=extraeol) res += tableLaTeX(table, spec=spec, extraeol=extraeol) f = open(outputfile, 'w') f.write(res) f.close() if verbose: print "Table written in %s" % outputfile
def main(dictAlg, order=None, outputdir='.', info='default', verbose=True): """Generates a figure showing the performance of algorithms. From a dictionary of :py:class:`DataSetList` sorted by algorithms, generates the cumulative distribution function of the bootstrap distribution of ERT for algorithms on multiple functions for multiple targets altogether. :param dict dictAlg: dictionary of :py:class:`DataSetList` instances one instance is equivalent to one algorithm, :param list targets: target function values :param list order: sorted list of keys to dictAlg for plotting order :param str outputdir: output directory :param str info: output file name suffix :param bool verbose: controls verbosity """ global x_limit # late assignment of default, because it can be set to None in config if 'x_limit' not in globals() or x_limit is None: x_limit = x_limit_default tmp = pp.dictAlgByDim(dictAlg) # tmp = pp.DictAlg(dictAlg).by_dim() if len(tmp) != 1: raise Exception('We never integrate over dimension.') dim = tmp.keys()[0] algorithms_with_data = [a for a in dictAlg.keys() if dictAlg[a] != []] dictFunc = pp.dictAlgByFun(dictAlg) # Collect data # Crafting effort correction: should we consider any? CrEperAlg = {} for alg in algorithms_with_data: CrE = 0. if 1 < 3 and dictAlg[alg][0].algId == 'GLOBAL': tmp = dictAlg[alg].dictByNoise() assert len(tmp.keys()) == 1 if tmp.keys()[0] == 'noiselessall': CrE = 0.5117 elif tmp.keys()[0] == 'nzall': CrE = 0.6572 CrEperAlg[alg] = CrE if CrE != 0.0: print 'Crafting effort for', alg, 'is', CrE dictData = {} # list of (ert per function) per algorithm dictMaxEvals = {} # list of (maxevals per function) per algorithm bestERT = [] # best ert per function # funcsolved = [set()] * len(targets) # number of functions solved per target xbest2009 = [] maxevalsbest2009 = [] for f, dictAlgperFunc in dictFunc.iteritems(): if function_IDs and f not in function_IDs: continue # print target_values((f, dim)) for j, t in enumerate(target_values((f, dim))): # for j, t in enumerate(genericsettings.current_testbed.ecdf_target_values(1e2, f)): # funcsolved[j].add(f) for alg in algorithms_with_data: x = [np.inf] * perfprofsamplesize runlengthunsucc = [] try: entry = dictAlgperFunc[alg][0] # one element per fun and per dim. evals = entry.detEvals([t])[0] runlengthsucc = evals[np.isnan(evals) == False] / entry.dim runlengthunsucc = entry.maxevals[np.isnan(evals)] / entry.dim if len(runlengthsucc) > 0: x = toolsstats.drawSP(runlengthsucc, runlengthunsucc, percentiles=[50], samplesize=perfprofsamplesize)[1] except (KeyError, IndexError): #set_trace() warntxt = ('Data for algorithm %s on function %d in %d-D ' % (alg, f, dim) + 'are missing.\n') warnings.warn(warntxt) dictData.setdefault(alg, []).extend(x) dictMaxEvals.setdefault(alg, []).extend(runlengthunsucc) if displaybest2009: #set_trace() if not bestalg.bestalgentries2009: bestalg.loadBBOB2009() bestalgentry = bestalg.bestalgentries2009[(dim, f)] bestalgevals = bestalgentry.detEvals(target_values((f, dim))) # print bestalgevals for j in range(len(bestalgevals[0])): if bestalgevals[1][j]: evals = bestalgevals[0][j] #set_trace() runlengthsucc = evals[np.isnan(evals) == False] / bestalgentry.dim runlengthunsucc = bestalgentry.maxevals[bestalgevals[1][j]][np.isnan(evals)] / bestalgentry.dim x = toolsstats.drawSP(runlengthsucc, runlengthunsucc, percentiles=[50], samplesize=perfprofsamplesize)[1] else: x = perfprofsamplesize * [np.inf] runlengthunsucc = [] xbest2009.extend(x) maxevalsbest2009.extend(runlengthunsucc) if order is None: order = dictData.keys() # Display data lines = [] if displaybest2009: args = {'ls': '-', 'linewidth': 6, 'marker': 'D', 'markersize': 11., 'markeredgewidth': 1.5, 'markerfacecolor': refcolor, 'markeredgecolor': refcolor, 'color': refcolor, 'label': 'best 2009', 'zorder': -1} lines.append(plotdata(np.array(xbest2009), x_limit, maxevalsbest2009, CrE = 0., **args)) for i, alg in enumerate(order): try: data = dictData[alg] maxevals = dictMaxEvals[alg] except KeyError: continue args = styles[(i) % len(styles)] args['linewidth'] = 1.5 args['markersize'] = 12. args['markeredgewidth'] = 1.5 args['markerfacecolor'] = 'None' args['markeredgecolor'] = args['color'] args['label'] = alg #args['markevery'] = perfprofsamplesize # option available in latest version of matplotlib #elif len(show_algorithms) > 0: #args['color'] = 'wheat' #args['ls'] = '-' #args['zorder'] = -1 lines.append(plotdata(np.array(data), x_limit, maxevals, CrE=CrEperAlg[alg], **args)) labels, handles = plotLegend(lines, x_limit) if True: #isLateXLeg: fileName = os.path.join(outputdir,'pprldmany_%s.tex' % (info)) try: f = open(fileName, 'w') f.write(r'\providecommand{\nperfprof}{7}') algtocommand = {} for i, alg in enumerate(order): tmp = r'\alg%sperfprof' % pptex.numtotext(i) f.write(r'\providecommand{%s}{\StrLeft{%s}{\nperfprof}}' % (tmp, toolsdivers.str_to_latex(toolsdivers.strip_pathname2(alg)))) algtocommand[alg] = tmp commandnames = [] if displaybest2009: tmp = r'\algzeroperfprof' f.write(r'\providecommand{%s}{best 2009}' % (tmp)) algtocommand['best 2009'] = tmp for l in labels: commandnames.append(algtocommand[l]) # f.write(headleg) f.write(r'\providecommand{\perfprofsidepanel}{\mbox{%s}' % commandnames[0]) # TODO: check len(labels) > 0 for i in range(1, len(labels)): f.write('\n' + r'\vfill \mbox{%s}' % commandnames[i]) f.write('}\n') # f.write(footleg) if verbose: print 'Wrote right-hand legend in %s' % fileName except: raise # TODO: Does this make sense? else: f.close() figureName = os.path.join(outputdir,'pprldmany_%s' % (info)) #beautify(figureName, funcsolved, x_limit*x_annote_factor, False, fileFormat=figformat) beautify() text = 'f%s' % (ppfig.consecutiveNumbers(sorted(dictFunc.keys()))) text += ',%d-D' % dim plt.text(0.01, 0.98, text, horizontalalignment="left", verticalalignment="top", transform=plt.gca().transAxes) a = plt.gca() plt.xlim(xmin=1e-0, xmax=x_limit**annotation_space_end_relative) xticks, labels = plt.xticks() tmp = [] for i in xticks: tmp.append('%d' % round(np.log10(i))) a.set_xticklabels(tmp) ppfig.saveFigure(figureName, verbose=verbose) plt.close()
def main(dictAlg, sortedAlgs, targets, outputdir='.', verbose=True, function_targets_line=True): # [1, 13, 101] """Generate one table per func with results of multiple algorithms.""" """Difference with the first version: * numbers aligned using the decimal separator * premices for dispersion measure * significance test against best algorithm * table width... """ # TODO: method is long, terrible to read, split if possible if not bestalg.bestalgentries2009: bestalg.loadBBOB2009() # Sort data per dimension and function dictData = {} dsListperAlg = list(dictAlg[i] for i in sortedAlgs) for n, entries in enumerate(dsListperAlg): tmpdictdim = entries.dictByDim() for d in tmpdictdim: tmpdictfun = tmpdictdim[d].dictByFunc() for f in tmpdictfun: dictData.setdefault((d, f), {})[n] = tmpdictfun[f] nbtests = len(dictData) for df in dictData: # Generate one table per df # best 2009 refalgentry = bestalg.bestalgentries2009[df] refalgert = refalgentry.detERT(targets) refalgevals = (refalgentry.detEvals((targetf, ))[0][0]) refalgnbruns = len(refalgevals) refalgnbsucc = numpy.sum(numpy.isnan(refalgevals) == False) # Process the data # The following variables will be lists of elements each corresponding # to an algorithm algnames = [] #algdata = [] algerts = [] algevals = [] algdisp = [] algnbsucc = [] algnbruns = [] algmedmaxevals = [] algmedfinalfunvals = [] algtestres = [] algentries = [] for n in sorted(dictData[df].keys()): entries = dictData[df][n] # the number of datasets for a given dimension and function (df) # should be strictly 1. TODO: find a way to warn # TODO: do this checking before... why wasn't it triggered by ppperprof? if len(entries) > 1: txt = ("There is more than a single entry associated with " "folder %s on %d-D f%d." % (sortedAlgs[n], df[0], df[1])) raise Exception(txt) entry = entries[0] algentries.append(entry) algnames.append(sortedAlgs[n]) evals = entry.detEvals(targets) #tmpdata = [] tmpdisp = [] tmpert = [] for i, e in enumerate(evals): succ = (numpy.isnan(e) == False) e[succ == False] = entry.maxevals[succ == False] ert = toolsstats.sp(e, issuccessful=succ)[0] #tmpdata.append(ert/refalgert[i]) if succ.any(): tmp = toolsstats.drawSP(e[succ], entry.maxevals[succ == False], [10, 50, 90], samplesize=samplesize)[0] tmpdisp.append((tmp[-1] - tmp[0]) / 2.) else: tmpdisp.append(numpy.nan) tmpert.append(ert) algerts.append(tmpert) algevals.append(evals) #algdata.append(tmpdata) algdisp.append(tmpdisp) algmedmaxevals.append(numpy.median(entry.maxevals)) algmedfinalfunvals.append(numpy.median(entry.finalfunvals)) #algmedmaxevals.append(numpy.median(entry.maxevals)/df[0]) #algmedfinalfunvals.append(numpy.median(entry.finalfunvals)) algtestres.append(significancetest(refalgentry, entry, targets)) # determine success probability for Df = 1e-8 e = entry.detEvals((targetf, ))[0] algnbsucc.append(numpy.sum(numpy.isnan(e) == False)) algnbruns.append(len(e)) # Process over all data # find best values... nalgs = len(dictData[df]) maxRank = 1 + numpy.floor( 0.14 * nalgs) # number of algs to be displayed in bold isBoldArray = [] # Point out the best values algfinaldata = [ ] # Store median function values/median number of function evaluations tmptop = getTopIndicesOfColumns(algerts, maxRank=maxRank) for i, erts in enumerate(algerts): tmp = [] for j, ert in enumerate(erts): # algi targetj tmp.append(i in tmptop[j] or (nalgs > 7 and algerts[i][j] <= 3. * refalgert[j])) isBoldArray.append(tmp) algfinaldata.append((algmedfinalfunvals[i], algmedmaxevals[i])) # significance test of best given algorithm against all others best_alg_idx = numpy.array(algerts).argsort(0)[ 0, :] # indexed by target index significance_versus_others = significance_all_best_vs_other( algentries, targets, best_alg_idx)[0] # Create the table table = [] spec = r'@{}c@{}|*{%d}{@{\,}r@{}X@{\,}}|@{}r@{}@{}l@{}' % ( len(targets) ) # in case StrLeft not working: replaced c@{} with l@{ } spec = r'@{}c@{}|*{%d}{@{}r@{}X@{}}|@{}r@{}@{}l@{}' % ( len(targets) ) # in case StrLeft not working: replaced c@{} with l@{ } extraeol = [] # Generate header lines if with_table_heading: header = funInfos[df[1]] if funInfos else 'f%d' % df[1] table.append([ r'\multicolumn{%d}{@{\,}c@{\,}}{{\textbf{%s}}}' % (2 * len(targets) + 2, header) ]) extraeol.append('') if function_targets_line is True or (function_targets_line and df[1] in function_targets_line): curline = [r'$\Delta f_\mathrm{opt}$'] for t in targets[0:-1]: curline.append(r'\multicolumn{2}{@{\,}X@{\,}}{%s}' % writeFEvals2(t, precision=1, isscientific=True)) curline.append( r'\multicolumn{2}{@{\,}X@{}|}{%s}' % writeFEvals2(targets[-1], precision=1, isscientific=True)) curline.append(r'\multicolumn{2}{@{}l@{}}{\#succ}') table.append(curline) extraeol.append(r'\hline') # extraeol.append(r'\hline\arrayrulecolor{tableShade}') curline = [r'ERT$_{\text{best}}$' ] if with_table_heading else [r'\textbf{f%d}' % df[1]] for i in refalgert[0:-1]: curline.append(r'\multicolumn{2}{@{\,}X@{\,}}{%s}' % writeFEvalsMaxPrec(float(i), 2)) curline.append(r'\multicolumn{2}{@{\,}X@{\,}|}{%s}' % writeFEvalsMaxPrec(float(refalgert[-1]), 2)) curline.append('%d' % refalgnbsucc) if refalgnbsucc: curline.append('/%d' % refalgnbruns) #curline.append(curline[0]) table.append(curline) extraeol.append('') #for i, gna in enumerate(zip((1, 2, 3), ('bla', 'blo', 'bli'))): #print i, gna, gno #set_trace() # Format data #if df == (5, 17): #set_trace() header = r'\providecommand{\ntables}{7}' for i, alg in enumerate(algnames): #algname, entries, irs, line, line2, succ, runs, testres1alg in zip(algnames, #data, dispersion, isBoldArray, isItalArray, nbsucc, nbruns, testres): commandname = r'\alg%stables' % numtotext(i) # header += r'\providecommand{%s}{{%s}{}}' % (commandname, str_to_latex(strip_pathname(alg))) header += r'\providecommand{%s}{\StrLeft{%s}{\ntables}}' % ( commandname, str_to_latex(strip_pathname(alg))) curline = [ commandname + r'\hspace*{\fill}' ] # each list element becomes a &-separated table entry? for j, tmp in enumerate( zip( algerts[i], algdisp[i], # j is target index isBoldArray[i], algtestres[i])): ert, dispersion, isBold, testres = tmp alignment = '@{\,}X@{\,}' if j == len(algerts[i]) - 1: alignment = '@{\,}X@{\,}|' data = ert / refalgert[j] # write star for significance against all other algorithms str_significance_subsup = '' if (len(best_alg_idx) > 0 and len(significance_versus_others) > 0 and i == best_alg_idx[j] and nbtests * significance_versus_others[j][1] < 0.05): logp = -numpy.ceil( numpy.log10( nbtests * significance_versus_others[j][1])) str_significance_subsup = r"^{%s%s}" % ( significance_vs_others_symbol, str(int(logp)) if logp > 1 else '') # moved out of the above else: this was a bug!? z, p = testres if (nbtests * p) < 0.05 and data < 1. and z < 0.: if not numpy.isinf(refalgert[j]): tmpevals = algevals[i][j].copy() tmpevals[numpy.isnan(tmpevals)] = algentries[ i].maxevals[numpy.isnan(tmpevals)] bestevals = refalgentry.detEvals([targets[j]]) bestevals, bestalgalg = (bestevals[0][0], bestevals[1][0]) bestevals[numpy.isnan( bestevals)] = refalgentry.maxevals[bestalgalg][ numpy.isnan(bestevals)] tmpevals = numpy.array(sorted( tmpevals))[0:min(len(tmpevals), len(bestevals))] bestevals = numpy.array(sorted( bestevals))[0:min(len(tmpevals), len(bestevals))] #The conditions are now that ERT < ERT_best and # all(sorted(FEvals_best) > sorted(FEvals_current)). if numpy.isinf(refalgert[j]) or all(tmpevals < bestevals): nbstars = -numpy.ceil(numpy.log10(nbtests * p)) # tmp2[-1] += r'$^{%s}$' % superscript str_significance_subsup += r'_{%s%s}' % ( significance_vs_ref_symbol, str(int(nbstars)) if nbstars > 1 else '') if str_significance_subsup: str_significance_subsup = '$%s$' % str_significance_subsup # format number in variable data if numpy.isnan(data): curline.append(r'\multicolumn{2}{%s}{.}' % alignment) else: if numpy.isinf(refalgert[j]): curline.append( r'\multicolumn{2}{%s}{\textbf{%s}\mbox{\tiny (%s)}%s}' % (alignment, writeFEvalsMaxPrec(algerts[i][j], 2), writeFEvalsMaxPrec(dispersion, precdispersion), str_significance_subsup)) continue tmp = writeFEvalsMaxPrec(data, precfloat, maxfloatrepr=maxfloatrepr) if data >= maxfloatrepr or data < 0.01: # either inf or scientific notation if numpy.isinf(data) and j == len(algerts[i]) - 1: tmp += r'\,\textit{%s}' % writeFEvalsMaxPrec( algfinaldata[i][1], 0, maxfloatrepr=maxfloatrepr) else: tmp = writeFEvalsMaxPrec(data, precscien, maxfloatrepr=data) if isBold: tmp = r'\textbf{%s}' % tmp if not numpy.isnan(dispersion): tmpdisp = dispersion / refalgert[j] if tmpdisp >= maxfloatrepr or tmpdisp < 0.005: # TODO: hack tmpdisp = writeFEvalsMaxPrec( tmpdisp, precdispersion, maxfloatrepr=tmpdisp) else: tmpdisp = writeFEvalsMaxPrec( tmpdisp, precdispersion, maxfloatrepr=maxfloatrepr) tmp += r'\mbox{\tiny (%s)}' % tmpdisp curline.append( r'\multicolumn{2}{%s}{%s%s}' % (alignment, tmp, str_significance_subsup)) else: tmp2 = tmp.split('.', 1) if len(tmp2) < 2: tmp2.append('') else: tmp2[-1] = '.' + tmp2[-1] if isBold: tmp3 = [] for k in tmp2: tmp3.append(r'\textbf{%s}' % k) tmp2 = tmp3 if not numpy.isnan(dispersion): tmpdisp = dispersion / refalgert[j] if tmpdisp >= maxfloatrepr or tmpdisp < 0.01: tmpdisp = writeFEvalsMaxPrec( tmpdisp, precdispersion, maxfloatrepr=tmpdisp) else: tmpdisp = writeFEvalsMaxPrec( tmpdisp, precdispersion, maxfloatrepr=maxfloatrepr) tmp2[-1] += (r'\mbox{\tiny (%s)}' % (tmpdisp)) tmp2[-1] += str_significance_subsup curline.extend(tmp2) curline.append('%d' % algnbsucc[i]) curline.append('/%d' % algnbruns[i]) table.append(curline) extraeol.append('') # Write table res = tableXLaTeX(table, spec=spec, extraeol=extraeol) try: filename = os.path.join( outputdir, 'pptables_f%03d_%02dD.tex' % (df[1], df[0])) f = open(filename, 'w') f.write(header + '\n') f.write(res) if verbose: print 'Wrote table in %s' % filename except: raise else: f.close()
def main(dsList0, dsList1, dimsOfInterest, outputdir, info='', verbose=True): """One table per dimension, modified to fit in 1 page per table.""" #TODO: method is long, split if possible dictDim0 = dsList0.dictByDim() dictDim1 = dsList1.dictByDim() alg0 = set(i[0] for i in dsList0.dictByAlg().keys()).pop()[0:3] alg1 = set(i[0] for i in dsList1.dictByAlg().keys()).pop()[0:3] open(os.path.join(outputdir, 'bbob_pproc_commands.tex'), 'a' ).write(r'\providecommand{\algorithmAshort}{%s}' % writeLabels(alg0) + '\n' + r'\providecommand{\algorithmBshort}{%s}' % writeLabels(alg1) + '\n') if info: info = '_' + info dims = set.intersection(set(dictDim0.keys()), set(dictDim1.keys())) if not bestalg.bestalgentries2009: bestalg.loadBBOB2009() header = [r'$\Delta f$'] for i in targetsOfInterest: #header.append(r'\multicolumn{2}{@{}c@{}}{$10^{%d}$}' % (int(numpy.log10(i)))) header.append(r'\multicolumn{2}{@{}c@{}}{1e%+d}' % (int(numpy.log10(i)))) header.append(r'\multicolumn{2}{|@{}r@{}}{\#succ}') for d in dimsOfInterest: # TODO set as input arguments table = [header] extraeol = [r'\hline'] try: dictFunc0 = dictDim0[d].dictByFunc() dictFunc1 = dictDim1[d].dictByFunc() except KeyError: continue funcs = set.union(set(dictFunc0.keys()), set(dictFunc1.keys())) nbtests = len(funcs) * 2. #len(dimsOfInterest) for f in sorted(funcs): bestalgentry = bestalg.bestalgentries2009[(d, f)] curline = [r'${\bf f_{%d}}$' % f] bestalgdata = bestalgentry.detERT(targetsOfInterest) bestalgevals, bestalgalgs = bestalgentry.detEvals(targetsOfInterest) for i in bestalgdata[:-1]: curline.append(r'\multicolumn{2}{@{}c@{}}{%s}' % writeFEvalsMaxPrec(i, 2)) curline.append(r'\multicolumn{2}{@{}c@{}|}{%s}' % writeFEvalsMaxPrec(bestalgdata[-1], 2)) tmp = bestalgentry.detEvals([targetf])[0][0] tmp2 = numpy.sum(numpy.isnan(tmp) == False) curline.append('%d' % (tmp2)) if tmp2 > 0: curline.append('/%d' % len(tmp)) table.append(curline[:]) extraeol.append('') rankdata0 = [] # never used # generate all data from ranksum test entries = [] ertdata = {} for nb, dsList in enumerate((dictFunc0, dictFunc1)): try: entry = dsList[f][0] # take the first DataSet, there should be only one? except KeyError: warnings.warn('data missing for data set ' + str(nb) + ' and function ' + str(f)) print('*** Warning: data missing for data set ' + str(nb) + ' and function ' + str(f) + '***') continue # TODO: problem here! ertdata[nb] = entry.detERT(targetsOfInterest) entries.append(entry) for _t in ertdata.values(): for _tt in _t: if _tt is None: raise ValueError if len(entries) < 2: # funcion not available for *both* algorithms continue # TODO: check which one is missing and make sure that what is there is displayed properly in the following testres0vs1 = significancetest(entries[0], entries[1], targetsOfInterest) testresbestvs1 = significancetest(bestalgentry, entries[1], targetsOfInterest) testresbestvs0 = significancetest(bestalgentry, entries[0], targetsOfInterest) for nb, entry in enumerate(entries): if nb == 0: curline = [r'1:\:\algorithmAshort\hspace*{\fill}'] else: curline = [r'2:\:\algorithmBshort\hspace*{\fill}'] #data = entry.detERT(targetsOfInterest) dispersion = [] data = [] evals = entry.detEvals(targetsOfInterest) for i in evals: succ = (numpy.isnan(i) == False) tmp = i.copy() tmp[succ==False] = entry.maxevals[numpy.isnan(i)] #set_trace() data.append(toolsstats.sp(tmp, issuccessful=succ)[0]) #if not any(succ): #set_trace() if any(succ): tmp2 = toolsstats.drawSP(tmp[succ], tmp[succ==False], (10, 50, 90), samplesize)[0] dispersion.append((tmp2[-1]-tmp2[0])/2.) else: dispersion.append(None) if nb == 0: assert not isinstance(data, numpy.ndarray) data0 = data[:] # TODO: check if it is not an array, it's never used anyway? for i, dati in enumerate(data): z, p = testres0vs1[i] # TODO: there is something with the sign that I don't get # assign significance flag, which is the -log10(p) significance0vs1 = 0 if nb != 0: z = -z # the test is symmetric if nbtests * p < 0.05 and z > 0: significance0vs1 = -int(numpy.ceil(numpy.log10(min([1.0, nbtests * p])))) # this is the larger the more significant isBold = significance0vs1 > 0 alignment = 'c' if i == len(data) - 1: # last element alignment = 'c|' if numpy.isinf(bestalgdata[i]): # if the 2009 best did not solve the problem tmp = writeFEvalsMaxPrec(float(dati), 2) if not numpy.isinf(dati): tmp = r'\textit{%s}' % (tmp) if isBold: tmp = r'\textbf{%s}' % tmp if dispersion[i] and numpy.isfinite(dispersion[i]): tmp += r'${\scriptscriptstyle (%s)}$' % writeFEvalsMaxPrec(dispersion[i], 1) tableentry = (r'\multicolumn{2}{@{}%s@{}}{%s}' % (alignment, tmp)) else: # Formatting tmp = float(dati)/bestalgdata[i] assert not numpy.isnan(tmp) isscientific = False if tmp >= 1000: isscientific = True tableentry = writeFEvals2(tmp, 2, isscientific=isscientific) tableentry = writeFEvalsMaxPrec(tmp, 2) if numpy.isinf(tmp) and i == len(data)-1: tableentry = (tableentry + r'\textit{%s}' % writeFEvals2(numpy.median(entry.maxevals), 2)) if isBold: tableentry = r'\textbf{%s}' % tableentry elif 11 < 3 and significance0vs1 < 0: # cave: negative significance has no meaning anymore tableentry = r'\textit{%s}' % tableentry if dispersion[i] and numpy.isfinite(dispersion[i]/bestalgdata[i]): tableentry += r'${\scriptscriptstyle (%s)}$' % writeFEvalsMaxPrec(dispersion[i]/bestalgdata[i], 1) tableentry = (r'\multicolumn{2}{@{}%s@{}}{%s}' % (alignment, tableentry)) elif tableentry.find('e') > -1 or (numpy.isinf(tmp) and i != len(data) - 1): if isBold: tableentry = r'\textbf{%s}' % tableentry elif 11 < 3 and significance0vs1 < 0: tableentry = r'\textit{%s}' % tableentry if dispersion[i] and numpy.isfinite(dispersion[i]/bestalgdata[i]): tableentry += r'${\scriptscriptstyle (%s)}$' % writeFEvalsMaxPrec(dispersion[i]/bestalgdata[i], 1) tableentry = (r'\multicolumn{2}{@{}%s@{}}{%s}' % (alignment, tableentry)) else: tmp = tableentry.split('.', 1) if isBold: tmp = list(r'\textbf{%s}' % i for i in tmp) elif 11 < 3 and significance0vs1 < 0: tmp = list(r'\textit{%s}' % i for i in tmp) tableentry = ' & .'.join(tmp) if len(tmp) == 1: tableentry += '&' if dispersion[i] and numpy.isfinite(dispersion[i]/bestalgdata[i]): tableentry += r'${\scriptscriptstyle (%s)}$' % writeFEvalsMaxPrec(dispersion[i]/bestalgdata[i], 1) superscript = '' if nb == 0: z, p = testresbestvs0[i] else: z, p = testresbestvs1[i] #The conditions are now that ERT < ERT_best if ((nbtests * p) < 0.05 and dati - bestalgdata[i] < 0. and z < 0.): nbstars = -numpy.ceil(numpy.log10(nbtests * p)) #tmp = '\hspace{-.5ex}'.join(nbstars * [r'\star']) if z > 0: superscript = r'\uparrow' #* nbstars else: superscript = r'\downarrow' #* nbstars # print z, linebest[i], line1 if nbstars > 1: superscript += str(int(nbstars)) if superscript or significance0vs1: s = '' if significance0vs1 > 0: s = '\star' if significance0vs1 > 1: s += str(significance0vs1) s = r'$^{' + s + superscript + r'}$' if tableentry.endswith('}'): tableentry = tableentry[:-1] + s + r'}' else: tableentry += s curline.append(tableentry) #curline.append(tableentry) #if dispersion[i] is None or numpy.isinf(bestalgdata[i]): #curline.append('') #else: #tmp = writeFEvalsMaxPrec(dispersion[i]/bestalgdata[i], 2) #curline.append('(%s)' % tmp) tmp = entry.evals[entry.evals[:, 0] <= targetf, 1:] try: tmp = tmp[0] curline.append('%d' % numpy.sum(numpy.isnan(tmp) == False)) except IndexError: curline.append('%d' % 0) curline.append('/%d' % entry.nbRuns()) table.append(curline[:]) extraeol.append('') extraeol[-1] = r'\hline' extraeol[-1] = '' outputfile = os.path.join(outputdir, 'pptable2_%02dD%s.tex' % (d, info)) spec = r'@{}c@{}|' + '*{%d}{@{}r@{}@{}l@{}}' % len(targetsOfInterest) + '|@{}r@{}@{}l@{}' res = r'\providecommand{\algorithmAshort}{%s}' % writeLabels(alg0) + '\n' res += r'\providecommand{\algorithmBshort}{%s}' % writeLabels(alg1) + '\n' # open(os.path.join(outputdir, 'bbob_pproc_commands.tex'), 'a').write(res) #res += tableLaTeXStar(table, width=r'0.45\textwidth', spec=spec, #extraeol=extraeol) res += tableLaTeX(table, spec=spec, extraeol=extraeol) f = open(outputfile, 'w') f.write(res) f.close() if verbose: print "Table written in %s" % outputfile
def main(dictAlg, sortedAlgs=None, target=ftarget_default, outputdir='ppdata', verbose=True): """From a DataSetList, returns figures showing the scaling: ERT/dim vs dim. One function and one target per figure. ``target`` can be a scalar, a list with one element or a ``pproc.TargetValues`` instance with one target. ``sortedAlgs`` is a list of string-identifies (folder names) """ # target becomes a TargetValues "list" with one element target = pproc.TargetValues.cast([target] if numpy.isscalar(target) else target) latex_commands_filename = os.path.join(outputdir, 'bbob_pproc_commands.tex') assert isinstance(target, pproc.TargetValues) if len(target) != 1: raise ValueError('only a single target can be managed in ppfigs, ' + str(len(target)) + ' targets were given') dictFunc = pproc.dictAlgByFun(dictAlg) if sortedAlgs is None: sortedAlgs = sorted(dictAlg.keys()) if not os.path.isdir(outputdir): os.mkdir(outputdir) for f in dictFunc: filename = os.path.join(outputdir,'ppfigs_f%03d' % (f)) handles = [] fix_styles(len(sortedAlgs)) # for i, alg in enumerate(sortedAlgs): dictDim = dictFunc[f][alg].dictByDim() # this does not look like the most obvious solution #Collect data dimert = [] ert = [] dimnbsucc = [] ynbsucc = [] nbsucc = [] dimmaxevals = [] maxevals = [] dimmedian = [] medianfes = [] for dim in sorted(dictDim): assert len(dictDim[dim]) == 1 entry = dictDim[dim][0] data = generateData(entry, target((f, dim))[0]) # TODO: here we might want a different target for each function if 1 < 3 or data[2] == 0: # No success dimmaxevals.append(dim) maxevals.append(float(data[3])/dim) if data[2] > 0: dimmedian.append(dim) medianfes.append(data[4]/dim) dimert.append(dim) ert.append(float(data[0])/dim) if data[1] < 1.: dimnbsucc.append(dim) ynbsucc.append(float(data[0])/dim) nbsucc.append('%d' % data[2]) # Draw lines tmp = plt.plot(dimert, ert, **styles[i]) #label=alg, ) plt.setp(tmp[0], markeredgecolor=plt.getp(tmp[0], 'color')) # For legend # tmp = plt.plot([], [], label=alg.replace('..' + os.sep, '').strip(os.sep), **styles[i]) tmp = plt.plot([], [], label=alg.split(os.sep)[-1], **styles[i]) plt.setp(tmp[0], markersize=12., markeredgecolor=plt.getp(tmp[0], 'color')) if dimmaxevals: tmp = plt.plot(dimmaxevals, maxevals, **styles[i]) plt.setp(tmp[0], markersize=20, #label=alg, markeredgecolor=plt.getp(tmp[0], 'color'), markeredgewidth=1, markerfacecolor='None', linestyle='None') handles.append(tmp) #tmp2 = plt.plot(dimmedian, medianfes, ls='', marker='+', # markersize=30, markeredgewidth=5, # markeredgecolor=plt.getp(tmp, 'color'))[0] #for i, n in enumerate(nbsucc): # plt.text(dimnbsucc[i], numpy.array(ynbsucc[i])*1.85, n, # verticalalignment='bottom', # horizontalalignment='center') if not bestalg.bestalgentries2009: bestalg.loadBBOB2009() bestalgdata = [] dimbestalg = list(df[0] for df in bestalg.bestalgentries2009 if df[1] == f) dimbestalg.sort() dimbestalg2 = [] for d in dimbestalg: entry = bestalg.bestalgentries2009[(d, f)] tmp = entry.detERT(target((f, d)))[0] if numpy.isfinite(tmp): bestalgdata.append(float(tmp)/d) dimbestalg2.append(d) tmp = plt.plot(dimbestalg2, bestalgdata, color=refcolor, linewidth=10, marker='d', markersize=25, markeredgecolor=refcolor, zorder=-1 #label='best 2009', ) handles.append(tmp) if show_significance: # plot significance-stars xstar, ystar = [], [] dims = sorted(pproc.dictAlgByDim(dictFunc[f])) for i, dim in enumerate(dims): datasets = pproc.dictAlgByDim(dictFunc[f])[dim] assert all([len(datasets[ialg]) == 1 for ialg in sortedAlgs if datasets[ialg]]) dsetlist = [datasets[ialg][0] for ialg in sortedAlgs if datasets[ialg]] if len(dsetlist) > 1: arzp, arialg = toolsstats.significance_all_best_vs_other(dsetlist, target((f, dim))) if arzp[0][1] * len(dims) < show_significance: ert = dsetlist[arialg[0]].detERT(target((f, dim)))[0] if ert < numpy.inf: xstar.append(dim) ystar.append(ert/dim) plt.plot(xstar, ystar, 'k*', markerfacecolor=None, markeredgewidth=2, markersize=0.5*styles[0]['markersize']) if funInfos: plt.gca().set_title(funInfos[f]) isLegend = False if legend: plotLegend(handles) elif 1 < 3: if f in (1, 24, 101, 130) and len(sortedAlgs) < 6: # 6 elements at most in the boxed legend isLegend = True beautify(legend=isLegend, rightlegend=legend) plt.text(plt.xlim()[0], plt.ylim()[0], 'target ' + target.label_name() + ': ' + target.label(0)) # TODO: check saveFigure(filename, verbose=verbose) plt.close() # generate commands in tex file: try: abc = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' alg_definitions = [] for i in range(len(sortedAlgs)): symb = r'{%s%s}' % (color_to_latex(styles[i]['color']), marker_to_latex(styles[i]['marker'])) alg_definitions.append((', ' if i > 0 else '') + '%s:%s' % (symb, '\\algorithm' + abc[i % len(abc)])) toolsdivers.prepend_to_file(latex_commands_filename, [#'\\providecommand{\\bbobppfigsftarget}{\\ensuremath{10^{%s}}}' # % target.loglabel(0), # int(numpy.round(numpy.log10(target))), '\\providecommand{\\bbobppfigslegend}[1]{', scaling_figure_caption(target), 'Legend: '] + alg_definitions + ['}'] ) toolsdivers.prepend_to_file(latex_commands_filename, ['\\providecommand{\\bbobECDFslegend}[1]{', ecdfs_figure_caption(target), '}'] ) if verbose: print 'Wrote commands and legend to %s' % filename # this is obsolete (however check templates) filename = os.path.join(outputdir,'ppfigs.tex') f = open(filename, 'w') f.write('% Do not modify this file: calls to post-processing software' + ' will overwrite any modification.\n') f.write('Legend: ') for i in range(0, len(sortedAlgs)): symb = r'{%s%s}' % (color_to_latex(styles[i]['color']), marker_to_latex(styles[i]['marker'])) f.write((', ' if i > 0 else '') + '%s:%s' % (symb, writeLabels(sortedAlgs[i]))) f.close() if verbose: print '(obsolete) Wrote legend in %s' % filename except IOError: raise handles.append(tmp) if funInfos: plt.gca().set_title(funInfos[f]) beautify(rightlegend=legend) if legend: plotLegend(handles) else: if f in (1, 24, 101, 130): plt.legend() saveFigure(filename, figFormat=genericsettings.fig_formats, verbose=verbose) plt.close()
def main(dsList, dimsOfInterest, outputdir, info='', verbose=True): """Generate a table of ratio ERT/ERTbest vs target precision. 1 table per dimension will be generated. Rank-sum tests table on "Final Data Points" for only one algorithm. that is, for example, using 1/#fevals(ftarget) if ftarget was reached and -f_final otherwise as input for the rank-sum test, where obviously the larger the better. """ #TODO: check that it works for any reference algorithm? #in the following the reference algorithm is the one given in #bestalg.bestalgentries which is the virtual best of BBOB dictDim = dsList.dictByDim() targetf=1e-8 if info: info = '_' + info # insert a separator between the default file name and the additional # information string. dims = set(dictDim.keys()) if not bestalg.bestalgentries2009: bestalg.loadBBOB2009() if isinstance(targetsOfInterest, pproc.RunlengthBasedTargetValues): header = [r'\#FEs/D'] for i in targetsOfInterest.labels(): header.append(r'\multicolumn{2}{@{}c@{}}{%s}' % i) else: header = [r'$\Delta f$'] for i in targetsOfInterest.target_values: header.append(r'\multicolumn{2}{@{}c@{}}{1e%+d}' % (int(np.log10(i)))) header.append(r'\multicolumn{2}{|@{}r@{}}{\#succ}') for d in dimsOfInterest: table = [header] extraeol = [r'\hline'] try: dictFunc = dictDim[d].dictByFunc() except KeyError: continue funcs = set(dictFunc.keys()) nbtests = float(len(funcs)) # #funcs tests times one algorithm for f in sorted(funcs): bestalgentry = bestalg.bestalgentries2009[(d, f)] curline = [r'${\bf f_{%d}}$' % f] bestalgdata = bestalgentry.detERT(targetsOfInterest((f,d))) bestalgevals, bestalgalgs = bestalgentry.detEvals(targetsOfInterest((f,d))) if isinstance(targetsOfInterest, pproc.RunlengthBasedTargetValues): #write ftarget:fevals for i in xrange(len(bestalgdata[:-1])): temp="%.1e" %targetsOfInterest((f,d))[i] if temp[-2]=="0": temp=temp[:-2]+temp[-1] curline.append(r'\multicolumn{2}{@{}c@{}}{\textit{%s}:%s \quad}' % (temp,writeFEvalsMaxPrec(bestalgdata[i], 2))) temp="%.1e" %targetsOfInterest((f,d))[-1] if temp[-2]=="0": temp=temp[:-2]+temp[-1] curline.append(r'\multicolumn{2}{@{}c@{}|}{\textit{%s}:%s }' % (temp,writeFEvalsMaxPrec(bestalgdata[-1], 2))) #success targetf=targetsOfInterest((f,d))[-1] else: # write #fevals of the reference alg for i in bestalgdata[:-1]: curline.append(r'\multicolumn{2}{@{}c@{}}{%s \quad}' % writeFEvalsMaxPrec(i, 2)) curline.append(r'\multicolumn{2}{@{}c@{}|}{%s}' % writeFEvalsMaxPrec(bestalgdata[-1], 2)) # write the success ratio for the reference alg tmp = bestalgentry.detEvals([targetf])[0][0] tmp2 = np.sum(np.isnan(tmp) == False) # count the nb of success curline.append('%d' % (tmp2)) if tmp2 > 0: curline.append('/%d' % len(tmp)) table.append(curline[:]) extraeol.append('') # generate all data for ranksum test assert len(dictFunc[f]) == 1 entry = dictFunc[f][0] # take the first element ertdata = entry.detERT(targetsOfInterest((f, d))) testresbestvs1 = significancetest(bestalgentry, entry, targetsOfInterest((f, d))) #for nb, entry in enumerate(entries): #curline = [r'\algshort\hspace*{\fill}'] curline = [''] #data = entry.detERT(targetsOfInterest) evals = entry.detEvals(targetsOfInterest((f,d))) dispersion = [] data = [] for i in evals: succ = (np.isnan(i) == False) tmp = i.copy() tmp[succ==False] = entry.maxevals[np.isnan(i)] #set_trace() # TODO: what is the difference between data and ertdata? data.append(toolsstats.sp(tmp, issuccessful=succ)[0]) #if not any(succ): #set_trace() if any(succ): tmp2 = toolsstats.drawSP(tmp[succ], tmp[succ==False], (10, 50, 90), samplesize)[0] dispersion.append((tmp2[-1] - tmp2[0]) / 2.) else: dispersion.append(None) assert data == ertdata for i, ert in enumerate(data): alignment = 'c' if i == len(data) - 1: # last element alignment = 'c|' nbstars = 0 z, p = testresbestvs1[i] if ert - bestalgdata[i] < 0. and not np.isinf(bestalgdata[i]): evals = entry.detEvals([targetsOfInterest((f,d))[i]])[0] evals[np.isnan(evals)] = entry.maxevals[np.isnan(evals)] bestevals = bestalgentry.detEvals([targetsOfInterest((f,d))[i]]) bestevals, bestalgalg = (bestevals[0][0], bestevals[1][0]) bestevals[np.isnan(bestevals)] = bestalgentry.maxevals[bestalgalg][np.isnan(bestevals)] evals = np.array(sorted(evals))[0:min(len(evals), len(bestevals))] bestevals = np.array(sorted(bestevals))[0:min(len(evals), len(bestevals))] #The conditions for significance are now that ERT < ERT_best and # all(sorted(FEvals_best) > sorted(FEvals_current)). if ((nbtests * p) < 0.05 and ert - bestalgdata[i] < 0. and z < 0. and (np.isinf(bestalgdata[i]) or all(evals < bestevals))): nbstars = -np.ceil(np.log10(nbtests * p)) isBold = False if nbstars > 0: isBold = True if np.isinf(bestalgdata[i]): # if the best did not solve the problem tmp = writeFEvalsMaxPrec(float(ert), 2) if not np.isinf(ert): tmp = r'\textit{%s}' % (tmp) if isBold: tmp = r'\textbf{%s}' % tmp tableentry = (r'\multicolumn{2}{@{}%s@{}}{%s}' % (alignment, tmp)) else: # Formatting tmp = float(ert) / bestalgdata[i] assert not np.isnan(tmp) tableentry = writeFEvalsMaxPrec(tmp, 2) if np.isinf(tmp) and i == len(data)-1: tableentry = (tableentry + r'\textit{%s}' % writeFEvals2(np.median(entry.maxevals), 2)) if isBold: tableentry = r'\textbf{%s}' % tableentry elif 11 < 3: # and significance0vs1 < 0: tableentry = r'\textit{%s}' % tableentry tableentry = (r'\multicolumn{2}{@{}%s@{}}{%s}' % (alignment, tableentry)) elif tableentry.find('e') > -1 or (np.isinf(tmp) and i != len(data) - 1): if isBold: tableentry = r'\textbf{%s}' % tableentry elif 11 < 3: # and significance0vs1 < 0: tableentry = r'\textit{%s}' % tableentry tableentry = (r'\multicolumn{2}{@{}%s@{}}{%s}' % (alignment, tableentry)) else: tmp = tableentry.split('.', 1) if isBold: tmp = list(r'\textbf{%s}' % i for i in tmp) elif 11 < 3: # and significance0vs1 < 0: tmp = list(r'\textit{%s}' % i for i in tmp) tableentry = ' & .'.join(tmp) if len(tmp) == 1: tableentry += '&' superscript = '' if nbstars > 0: #tmp = '\hspace{-.5ex}'.join(nbstars * [r'\star']) if z > 0: superscript = r'\uparrow' #* nbstars else: superscript = r'\downarrow' #* nbstars # print z, linebest[i], line1 if nbstars > 1: superscript += str(int(min((9, nbstars)))) # superscript += str(int(nbstars)) #if superscript or significance0vs1: #s = '' #if significance0vs1 > 0: #s = '\star' #if significance0vs1 > 1: #s += str(significance0vs1) #s = r'$^{' + s + superscript + r'}$' #if tableentry.endswith('}'): #tableentry = tableentry[:-1] + s + r'}' #else: #tableentry += s if dispersion[i]: if not np.isinf(bestalgdata[i]): tmp = writeFEvalsMaxPrec(dispersion[i]/bestalgdata[i], 1) else: tmp = writeFEvalsMaxPrec(dispersion[i], 1) tableentry += (r'${\scriptscriptstyle(%s)}$' % tmp) if superscript: s = r'$^{' + superscript + r'}$' if tableentry.endswith('}'): tableentry = tableentry[:-1] + s + r'}' else: tableentry += s curline.append(tableentry) #curline.append(tableentry) #if dispersion[i] is None or np.isinf(bestalgdata[i]): #curline.append('') #else: #tmp = writeFEvalsMaxPrec(dispersion[i]/bestalgdata[i], 2) #curline.append('(%s)' % tmp) tmp = entry.evals[entry.evals[:, 0] <= targetf, 1:] try: tmp = tmp[0] curline.append('%d' % np.sum(np.isnan(tmp) == False)) except IndexError: curline.append('%d' % 0) curline.append('/%d' % entry.nbRuns()) table.append(curline[:]) extraeol.append(r'\hline') extraeol[-1] = '' outputfile = os.path.join(outputdir, 'pptable_%02dD%s.tex' % (d, info)) if isinstance(targetsOfInterest, pproc.RunlengthBasedTargetValues): spec = r'@{}c@{}|' + '*{%d}{@{ }r@{}@{}l@{}}' % len(targetsOfInterest) + '|@{}r@{}@{}l@{}' else: spec = r'@{}c@{}|' + '*{%d}{@{}r@{}@{}l@{}}' % len(targetsOfInterest) + '|@{}r@{}@{}l@{}' #res = r'\providecommand{\algshort}{%s}' % alg1 + '\n' #res += tableLaTeXStar(table, width=r'0.45\textwidth', spec=spec, #extraeol=extraeol) res = tableLaTeX(table, spec=spec, extraeol=extraeol) f = open(outputfile, 'w') f.write(res) f.close() if verbose: print "Table written in %s" % outputfile
def main(dictAlg, order=None, outputdir=".", info="default", dimension=None, verbose=True): """Generates a figure showing the performance of algorithms. From a dictionary of :py:class:`DataSetList` sorted by algorithms, generates the cumulative distribution function of the bootstrap distribution of ERT for algorithms on multiple functions for multiple targets altogether. :param dict dictAlg: dictionary of :py:class:`DataSetList` instances one instance is equivalent to one algorithm, :param list targets: target function values :param list order: sorted list of keys to dictAlg for plotting order :param str outputdir: output directory :param str info: output file name suffix :param bool verbose: controls verbosity """ global x_limit # late assignment of default, because it can be set to None in config global divide_by_dimension # not fully implemented/tested yet if "x_limit" not in globals() or x_limit is None: x_limit = x_limit_default tmp = pp.dictAlgByDim(dictAlg) # tmp = pp.DictAlg(dictAlg).by_dim() if len(tmp) != 1 and dimension is None: raise ValueError("We never integrate over dimension.") if dimension is not None: if dimension not in tmp.keys(): raise ValueError("dimension %d not in dictAlg dimensions %s" % (dimension, str(tmp.keys()))) tmp = {dimension: tmp[dimension]} dim = tmp.keys()[0] divisor = dim if divide_by_dimension else 1 algorithms_with_data = [a for a in dictAlg.keys() if dictAlg[a] != []] dictFunc = pp.dictAlgByFun(dictAlg) # Collect data # Crafting effort correction: should we consider any? CrEperAlg = {} for alg in algorithms_with_data: CrE = 0.0 if 1 < 3 and dictAlg[alg][0].algId == "GLOBAL": tmp = dictAlg[alg].dictByNoise() assert len(tmp.keys()) == 1 if tmp.keys()[0] == "noiselessall": CrE = 0.5117 elif tmp.keys()[0] == "nzall": CrE = 0.6572 CrEperAlg[alg] = CrE if CrE != 0.0: print "Crafting effort for", alg, "is", CrE dictData = {} # list of (ert per function) per algorithm dictMaxEvals = {} # list of (maxevals per function) per algorithm bestERT = [] # best ert per function # funcsolved = [set()] * len(targets) # number of functions solved per target xbest2009 = [] maxevalsbest2009 = [] for f, dictAlgperFunc in dictFunc.iteritems(): if function_IDs and f not in function_IDs: continue # print target_values((f, dim)) for j, t in enumerate(target_values((f, dim))): # for j, t in enumerate(genericsettings.current_testbed.ecdf_target_values(1e2, f)): # funcsolved[j].add(f) for alg in algorithms_with_data: x = [np.inf] * perfprofsamplesize runlengthunsucc = [] try: entry = dictAlgperFunc[alg][0] # one element per fun and per dim. evals = entry.detEvals([t])[0] assert entry.dim == dim runlengthsucc = evals[np.isnan(evals) == False] / divisor runlengthunsucc = entry.maxevals[np.isnan(evals)] / divisor if len(runlengthsucc) > 0: x = toolsstats.drawSP( runlengthsucc, runlengthunsucc, percentiles=[50], samplesize=perfprofsamplesize )[1] except (KeyError, IndexError): # set_trace() warntxt = "Data for algorithm %s on function %d in %d-D " % (alg, f, dim) + "are missing.\n" warnings.warn(warntxt) dictData.setdefault(alg, []).extend(x) dictMaxEvals.setdefault(alg, []).extend(runlengthunsucc) if displaybest2009: # set_trace() if not bestalg.bestalgentries2009: bestalg.loadBBOB2009() bestalgentry = bestalg.bestalgentries2009[(dim, f)] bestalgevals = bestalgentry.detEvals(target_values((f, dim))) # print bestalgevals for j in range(len(bestalgevals[0])): if bestalgevals[1][j]: evals = bestalgevals[0][j] # set_trace() assert dim == bestalgentry.dim runlengthsucc = evals[np.isnan(evals) == False] / divisor runlengthunsucc = bestalgentry.maxevals[bestalgevals[1][j]][np.isnan(evals)] / divisor x = toolsstats.drawSP( runlengthsucc, runlengthunsucc, percentiles=[50], samplesize=perfprofsamplesize )[1] else: x = perfprofsamplesize * [np.inf] runlengthunsucc = [] xbest2009.extend(x) maxevalsbest2009.extend(runlengthunsucc) if order is None: order = dictData.keys() # Display data lines = [] if displaybest2009: args = { "ls": "-", "linewidth": 6, "marker": "D", "markersize": 11.0, "markeredgewidth": 1.5, "markerfacecolor": refcolor, "markeredgecolor": refcolor, "color": refcolor, "label": "best 2009", "zorder": -1, } lines.append(plotdata(np.array(xbest2009), x_limit, maxevalsbest2009, CrE=0.0, **args)) def algname_to_label(algname, dirname=None): """to be extended to become generally useful""" if isinstance(algname, (tuple, list)): # not sure this is needed return " ".join([str(name) for name in algname]) return str(algname) for i, alg in enumerate(order): try: data = dictData[alg] maxevals = dictMaxEvals[alg] except KeyError: continue args = styles[(i) % len(styles)] args["linewidth"] = 1.5 args["markersize"] = 12.0 args["markeredgewidth"] = 1.5 args["markerfacecolor"] = "None" args["markeredgecolor"] = args["color"] args["label"] = algname_to_label(alg) # args['markevery'] = perfprofsamplesize # option available in latest version of matplotlib # elif len(show_algorithms) > 0: # args['color'] = 'wheat' # args['ls'] = '-' # args['zorder'] = -1 # plotdata calls pprldistr.plotECDF which calls ppfig.plotUnifLog... which does the work lines.append(plotdata(np.array(data), x_limit, maxevals, CrE=CrEperAlg[alg], **args)) labels, handles = plotLegend(lines, x_limit) if True: # isLateXLeg: fileName = os.path.join(outputdir, "pprldmany_%s.tex" % (info)) with open(fileName, "w") as f: f.write(r"\providecommand{\nperfprof}{7}") algtocommand = {} # latex commands for i, alg in enumerate(order): tmp = r"\alg%sperfprof" % pptex.numtotext(i) f.write( r"\providecommand{%s}{\StrLeft{%s}{\nperfprof}}" % (tmp, toolsdivers.str_to_latex(toolsdivers.strip_pathname2(algname_to_label(alg)))) ) algtocommand[algname_to_label(alg)] = tmp if displaybest2009: tmp = r"\algzeroperfprof" f.write(r"\providecommand{%s}{best 2009}" % (tmp)) algtocommand["best 2009"] = tmp commandnames = [] for label in labels: commandnames.append(algtocommand[label]) # f.write(headleg) if ( len(order) > 28 ): # latex sidepanel won't work well for more than 25 algorithms, but original labels are also clipped f.write( r"\providecommand{\perfprofsidepanel}{\mbox{%s}\vfill\mbox{%s}}" % (commandnames[0], commandnames[-1]) ) else: fontsize_command = r"\tiny{}" if len(order) > 19 else "" f.write( r"\providecommand{\perfprofsidepanel}{{%s\mbox{%s}" % (fontsize_command, commandnames[0]) ) # TODO: check len(labels) > 0 for i in range(1, len(labels)): f.write("\n" + r"\vfill \mbox{%s}" % commandnames[i]) f.write("}}\n") # f.write(footleg) if verbose: print "Wrote right-hand legend in %s" % fileName figureName = os.path.join(outputdir, "pprldmany_%s" % (info)) # beautify(figureName, funcsolved, x_limit*x_annote_factor, False, fileFormat=figformat) beautify() text = "f%s" % (ppfig.consecutiveNumbers(sorted(dictFunc.keys()))) text += ",%d-D" % dim # TODO: this is strange when different dimensions are plotted plt.text(0.01, 0.98, text, horizontalalignment="left", verticalalignment="top", transform=plt.gca().transAxes) if len(dictFunc) == 1: plt.title(" ".join((str(dictFunc.keys()[0]), genericsettings.current_testbed.short_names[dictFunc.keys()[0]]))) a = plt.gca() plt.xlim(xmin=1e-0, xmax=x_limit ** annotation_space_end_relative) xticks, labels = plt.xticks() tmp = [] for i in xticks: tmp.append("%d" % round(np.log10(i))) a.set_xticklabels(tmp) if save_figure: ppfig.saveFigure(figureName, verbose=verbose) if len(dictFunc) == 1: ppfig.save_single_functions_html( os.path.join(outputdir, "pprldmany"), "", # algorithms names are clearly visible in the figure add_to_names="_%02dD" % (dim), algorithmCount=ppfig.AlgorithmCount.NON_SPECIFIED, ) if close_figure: plt.close()
def main(dictAlg, order=None, outputdir='.', info='default', dimension=None, verbose=True): """Generates a figure showing the performance of algorithms. From a dictionary of :py:class:`DataSetList` sorted by algorithms, generates the cumulative distribution function of the bootstrap distribution of ERT for algorithms on multiple functions for multiple targets altogether. :param dict dictAlg: dictionary of :py:class:`DataSetList` instances one instance is equivalent to one algorithm, :param list targets: target function values :param list order: sorted list of keys to dictAlg for plotting order :param str outputdir: output directory :param str info: output file name suffix :param bool verbose: controls verbosity """ global x_limit # late assignment of default, because it can be set to None in config global divide_by_dimension # not fully implemented/tested yet if 'x_limit' not in globals() or x_limit is None: x_limit = x_limit_default tmp = pp.dictAlgByDim(dictAlg) # tmp = pp.DictAlg(dictAlg).by_dim() if len(tmp) != 1 and dimension is None: raise ValueError('We never integrate over dimension.') if dimension is not None: if dimension not in tmp.keys(): raise ValueError('dimension %d not in dictAlg dimensions %s' % (dimension, str(tmp.keys()))) tmp = {dimension: tmp[dimension]} dim = tmp.keys()[0] divisor = dim if divide_by_dimension else 1 algorithms_with_data = [a for a in dictAlg.keys() if dictAlg[a] != []] dictFunc = pp.dictAlgByFun(dictAlg) # Collect data # Crafting effort correction: should we consider any? CrEperAlg = {} for alg in algorithms_with_data: CrE = 0. if 1 < 3 and dictAlg[alg][0].algId == 'GLOBAL': tmp = dictAlg[alg].dictByNoise() assert len(tmp.keys()) == 1 if tmp.keys()[0] == 'noiselessall': CrE = 0.5117 elif tmp.keys()[0] == 'nzall': CrE = 0.6572 CrEperAlg[alg] = CrE if CrE != 0.0: print 'Crafting effort for', alg, 'is', CrE dictData = {} # list of (ert per function) per algorithm dictMaxEvals = {} # list of (maxevals per function) per algorithm bestERT = [] # best ert per function # funcsolved = [set()] * len(targets) # number of functions solved per target xbest2009 = [] maxevalsbest2009 = [] for f, dictAlgperFunc in dictFunc.iteritems(): if function_IDs and f not in function_IDs: continue # print target_values((f, dim)) for j, t in enumerate(target_values((f, dim))): # for j, t in enumerate(genericsettings.current_testbed.ecdf_target_values(1e2, f)): # funcsolved[j].add(f) for alg in algorithms_with_data: x = [np.inf] * perfprofsamplesize runlengthunsucc = [] try: entry = dictAlgperFunc[alg][ 0] # one element per fun and per dim. evals = entry.detEvals([t])[0] assert entry.dim == dim runlengthsucc = evals[np.isnan(evals) == False] / divisor runlengthunsucc = entry.maxevals[np.isnan(evals)] / divisor if len(runlengthsucc) > 0: x = toolsstats.drawSP(runlengthsucc, runlengthunsucc, percentiles=[50], samplesize=perfprofsamplesize)[1] except (KeyError, IndexError): #set_trace() warntxt = ( 'Data for algorithm %s on function %d in %d-D ' % (alg, f, dim) + 'are missing.\n') warnings.warn(warntxt) dictData.setdefault(alg, []).extend(x) dictMaxEvals.setdefault(alg, []).extend(runlengthunsucc) if displaybest2009: #set_trace() if not bestalg.bestalgentries2009: bestalg.loadBBOB2009() bestalgentry = bestalg.bestalgentries2009[(dim, f)] bestalgevals = bestalgentry.detEvals(target_values((f, dim))) # print bestalgevals for j in range(len(bestalgevals[0])): if bestalgevals[1][j]: evals = bestalgevals[0][j] #set_trace() assert dim == bestalgentry.dim runlengthsucc = evals[np.isnan(evals) == False] / divisor runlengthunsucc = bestalgentry.maxevals[ bestalgevals[1][j]][np.isnan(evals)] / divisor x = toolsstats.drawSP(runlengthsucc, runlengthunsucc, percentiles=[50], samplesize=perfprofsamplesize)[1] else: x = perfprofsamplesize * [np.inf] runlengthunsucc = [] xbest2009.extend(x) maxevalsbest2009.extend(runlengthunsucc) if order is None: order = dictData.keys() # Display data lines = [] if displaybest2009: args = { 'ls': '-', 'linewidth': 6, 'marker': 'D', 'markersize': 11., 'markeredgewidth': 1.5, 'markerfacecolor': refcolor, 'markeredgecolor': refcolor, 'color': refcolor, 'label': 'best 2009', 'zorder': -1 } lines.append( plotdata(np.array(xbest2009), x_limit, maxevalsbest2009, CrE=0., **args)) def algname_to_label(algname, dirname=None): """to be extended to become generally useful""" if isinstance(algname, (tuple, list)): # not sure this is needed return ' '.join([str(name) for name in algname]) return str(algname) for i, alg in enumerate(order): try: data = dictData[alg] maxevals = dictMaxEvals[alg] except KeyError: continue args = styles[(i) % len(styles)] args['linewidth'] = 1.5 args['markersize'] = 12. args['markeredgewidth'] = 1.5 args['markerfacecolor'] = 'None' args['markeredgecolor'] = args['color'] args['label'] = algname_to_label(alg) #args['markevery'] = perfprofsamplesize # option available in latest version of matplotlib #elif len(show_algorithms) > 0: #args['color'] = 'wheat' #args['ls'] = '-' #args['zorder'] = -1 # plotdata calls pprldistr.plotECDF which calls ppfig.plotUnifLog... which does the work lines.append( plotdata(np.array(data), x_limit, maxevals, CrE=CrEperAlg[alg], **args)) labels, handles = plotLegend(lines, x_limit) if True: # isLateXLeg: fileName = os.path.join(outputdir, 'pprldmany_%s.tex' % (info)) with open(fileName, 'w') as f: f.write(r'\providecommand{\nperfprof}{7}') algtocommand = {} # latex commands for i, alg in enumerate(order): tmp = r'\alg%sperfprof' % pptex.numtotext(i) f.write( r'\providecommand{%s}{\StrLeft{%s}{\nperfprof}}' % (tmp, toolsdivers.str_to_latex( toolsdivers.strip_pathname2(algname_to_label(alg))))) algtocommand[algname_to_label(alg)] = tmp if displaybest2009: tmp = r'\algzeroperfprof' f.write(r'\providecommand{%s}{best 2009}' % (tmp)) algtocommand['best 2009'] = tmp commandnames = [] for label in labels: commandnames.append(algtocommand[label]) # f.write(headleg) if len( order ) > 28: # latex sidepanel won't work well for more than 25 algorithms, but original labels are also clipped f.write( r'\providecommand{\perfprofsidepanel}{\mbox{%s}\vfill\mbox{%s}}' % (commandnames[0], commandnames[-1])) else: fontsize_command = r'\tiny{}' if len(order) > 19 else '' f.write(r'\providecommand{\perfprofsidepanel}{{%s\mbox{%s}' % (fontsize_command, commandnames[0])) # TODO: check len(labels) > 0 for i in range(1, len(labels)): f.write('\n' + r'\vfill \mbox{%s}' % commandnames[i]) f.write('}}\n') # f.write(footleg) if verbose: print 'Wrote right-hand legend in %s' % fileName figureName = os.path.join(outputdir, 'pprldmany_%s' % (info)) #beautify(figureName, funcsolved, x_limit*x_annote_factor, False, fileFormat=figformat) beautify() text = 'f%s' % (ppfig.consecutiveNumbers(sorted(dictFunc.keys()))) text += ',%d-D' % dim # TODO: this is strange when different dimensions are plotted plt.text(0.01, 0.98, text, horizontalalignment="left", verticalalignment="top", transform=plt.gca().transAxes) if len(dictFunc) == 1: plt.title(' '.join( (str(dictFunc.keys()[0]), genericsettings.current_testbed.short_names[dictFunc.keys()[0]]))) a = plt.gca() plt.xlim(xmin=1e-0, xmax=x_limit**annotation_space_end_relative) xticks, labels = plt.xticks() tmp = [] for i in xticks: tmp.append('%d' % round(np.log10(i))) a.set_xticklabels(tmp) if save_figure: ppfig.saveFigure(figureName, verbose=verbose) if len(dictFunc) == 1: ppfig.save_single_functions_html( os.path.join(outputdir, 'pprldmany'), '', # algorithms names are clearly visible in the figure add_to_names='_%02dD' % (dim), algorithmCount=ppfig.AlgorithmCount.NON_SPECIFIED) if close_figure: plt.close()
def main(dictAlg, sortedAlgs, target=1e-8, outputdir='ppdata', verbose=True): """From a DataSetList, returns figures showing the scaling: ERT/dim vs dim. One function and one target per figure. sortedAlgs is a list of string-identifies (folder names) """ dictFunc = pproc.dictAlgByFun(dictAlg) for f in dictFunc: filename = os.path.join(outputdir,'ppfigs_f%03d' % (f)) handles = [] fix_styles(len(sortedAlgs)) # for i, alg in enumerate(sortedAlgs): dictDim = dictFunc[f][alg].dictByDim() #Collect data dimert = [] ert = [] dimnbsucc = [] ynbsucc = [] nbsucc = [] dimmaxevals = [] maxevals = [] dimmedian = [] medianfes = [] for dim in sorted(dictDim): assert len(dictDim[dim]) == 1 entry = dictDim[dim][0] data = generateData(entry, target) # TODO: here we might want a different target for each function if 1 < 3 or data[2] == 0: # No success dimmaxevals.append(dim) maxevals.append(float(data[3])/dim) if data[2] > 0: dimmedian.append(dim) medianfes.append(data[4]/dim) dimert.append(dim) ert.append(float(data[0])/dim) if data[1] < 1.: dimnbsucc.append(dim) ynbsucc.append(float(data[0])/dim) nbsucc.append('%d' % data[2]) # Draw lines tmp = plt.plot(dimert, ert, **styles[i]) #label=alg, ) plt.setp(tmp[0], markeredgecolor=plt.getp(tmp[0], 'color')) # For legend # tmp = plt.plot([], [], label=alg.replace('..' + os.sep, '').strip(os.sep), **styles[i]) tmp = plt.plot([], [], label=alg.split(os.sep)[-1], **styles[i]) plt.setp(tmp[0], markersize=12., markeredgecolor=plt.getp(tmp[0], 'color')) if dimmaxevals: tmp = plt.plot(dimmaxevals, maxevals, **styles[i]) plt.setp(tmp[0], markersize=20, #label=alg, markeredgecolor=plt.getp(tmp[0], 'color'), markeredgewidth=1, markerfacecolor='None', linestyle='None') handles.append(tmp) #tmp2 = plt.plot(dimmedian, medianfes, ls='', marker='+', # markersize=30, markeredgewidth=5, # markeredgecolor=plt.getp(tmp, 'color'))[0] #for i, n in enumerate(nbsucc): # plt.text(dimnbsucc[i], numpy.array(ynbsucc[i])*1.85, n, # verticalalignment='bottom', # horizontalalignment='center') if not bestalg.bestalgentries2009: bestalg.loadBBOB2009() bestalgdata = [] dimbestalg = list(df[0] for df in bestalg.bestalgentries2009 if df[1] == f) dimbestalg.sort() dimbestalg2 = [] for d in dimbestalg: entry = bestalg.bestalgentries2009[(d, f)] tmp = entry.detERT([target])[0] if numpy.isfinite(tmp): bestalgdata.append(float(tmp)/d) dimbestalg2.append(d) tmp = plt.plot(dimbestalg2, bestalgdata, color=refcolor, linewidth=10, marker='d', markersize=25, markeredgecolor=refcolor, zorder=-1 #label='best 2009', ) handles.append(tmp) if show_significance: # plot significance-stars xstar, ystar = [], [] dims = sorted(pproc.dictAlgByDim(dictFunc[f])) for i, dim in enumerate(dims): datasets = pproc.dictAlgByDim(dictFunc[f])[dim] assert all([len(datasets[ialg]) == 1 for ialg in sortedAlgs if datasets[ialg]]) dsetlist = [datasets[ialg][0] for ialg in sortedAlgs if datasets[ialg]] if len(dsetlist) > 1: arzp, arialg = toolsstats.significance_all_best_vs_other(dsetlist, [target]) if arzp[0][1] * len(dims) < 0.05: ert = dsetlist[arialg[0]].detERT([target])[0] if ert < numpy.inf: xstar.append(dim) ystar.append(ert/dim) plt.plot(xstar, ystar, 'k*', markerfacecolor=None, markeredgewidth=2, markersize=0.5*styles[0]['markersize']) if funInfos: plt.gca().set_title(funInfos[f]) isLegend = False if legend: plotLegend(handles) elif 1 < 3: if f in (1, 24, 101, 130) and len(sortedAlgs) < 6: # 6 elements at most in the boxed legend isLegend = True beautify(legend=isLegend, rightlegend=legend) plt.text(plt.xlim()[0], plt.ylim()[0], 'ftarget=%.0e' % target) saveFigure(filename, verbose=verbose) plt.close() # generate commands in tex file: try: abc = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' alg_definitions = [] for i in range(len(sortedAlgs)): symb = r'{%s%s}' % (color_to_latex(styles[i]['color']), marker_to_latex(styles[i]['marker'])) alg_definitions.append((', ' if i > 0 else '') + '%s:%s' % (symb, '\\algorithm' + abc[i % len(abc)])) filename = os.path.join(outputdir, 'bbob_pproc_commands.tex') toolsdivers.prepend_to_file(filename, ['\\providecommand{\\bbobppfigsftarget}{\\ensuremath{10^{%d}}}' % int(numpy.round(numpy.log10(target))), '\\providecommand{\\bbobppfigslegend}[1]{', scaling_figure_legend, 'Legend: '] + alg_definitions + ['}'] ) if verbose: print 'Wrote commands and legend to %s' % filename # this is obsolete (however check templates) filename = os.path.join(outputdir,'ppfigs.tex') f = open(filename, 'w') f.write('% Do not modify this file: calls to post-processing software' + ' will overwrite any modification.\n') f.write('Legend: ') for i in range(0, len(sortedAlgs)): symb = r'{%s%s}' % (color_to_latex(styles[i]['color']), marker_to_latex(styles[i]['marker'])) f.write((', ' if i > 0 else '') + '%s:%s' % (symb, writeLabels(sortedAlgs[i]))) f.close() if verbose: print '(obsolete) Wrote legend in %s' % filename except IOError: raise handles.append(tmp) if funInfos: plt.gca().set_title(funInfos[f]) beautify(rightlegend=legend) if legend: plotLegend(handles) else: if f in (1, 24, 101, 130): plt.legend() saveFigure(filename, figFormat=genericsettings.fig_formats, verbose=verbose) plt.close()