def _normalize_sv_coverage_gatk(group_id, inputs, backgrounds, work_dir, back_files, out_files): """Normalize CNV coverage using panel of normals with GATK's de-noise approaches. """ input_backs = set( filter( lambda x: x is not None, [dd.get_background_cnv_reference(d, "gatk-cnv") for d in inputs])) if input_backs: assert len( input_backs ) == 1, "Multiple backgrounds in group: %s" % list(input_backs) pon = list(input_backs)[0] elif backgrounds: pon = gatkcnv.create_panel_of_normals(backgrounds, group_id, work_dir) else: pon = None for data in inputs: work_dir = utils.safe_makedir( os.path.join(dd.get_work_dir(data), "structural", dd.get_sample_name(data), "bins")) denoise_file = gatkcnv.denoise(data, pon, work_dir) out_files[dd.get_sample_name(data)] = denoise_file back_files[dd.get_sample_name(data)] = pon return back_files, out_files
def _normalize_sv_coverage_gatk(group_id, inputs, backgrounds, work_dir, back_files, out_files): """Normalize CNV coverage using panel of normals with GATK's de-noise approaches. """ pon = gatkcnv.create_panel_of_normals(backgrounds, group_id, work_dir) if backgrounds else None for data in inputs: work_dir = utils.safe_makedir( os.path.join(dd.get_work_dir(data), "structural", dd.get_sample_name(data), "bins")) denoise_file = gatkcnv.denoise(data, pon, work_dir) out_files[dd.get_sample_name(data)] = denoise_file back_files[dd.get_sample_name(data)] = pon return back_files, out_files
def _normalize_sv_coverage_gatk(group_id, inputs, backgrounds, work_dir, back_files, out_files): """Normalize CNV coverage using panel of normals with GATK's de-noise approaches. """ input_backs = set(filter(lambda x: x is not None, [dd.get_background_cnv_reference(d, "gatk-cnv") for d in inputs])) if input_backs: assert len(input_backs) == 1, "Multiple backgrounds in group: %s" % list(input_backs) pon = list(input_backs)[0] elif backgrounds: pon = gatkcnv.create_panel_of_normals(backgrounds, group_id, work_dir) else: pon = None for data in inputs: work_dir = utils.safe_makedir(os.path.join(dd.get_work_dir(data), "structural", dd.get_sample_name(data), "bins")) denoise_file = gatkcnv.denoise(data, pon, work_dir) out_files[dd.get_sample_name(data)] = denoise_file back_files[dd.get_sample_name(data)] = pon return back_files, out_files