def _run_coverage_qc(bam_file, data, out_dir): """Run coverage QC analysis""" out = dict() total_reads = sambamba.number_of_reads(data, bam_file) out['Total_reads'] = total_reads mapped = sambamba.number_of_mapped_reads(data, bam_file) out['Mapped_reads'] = mapped if total_reads: out['Mapped_reads_pct'] = 100.0 * mapped / total_reads if mapped: mapped_unique = sambamba.number_of_mapped_reads(data, bam_file, keep_dups=False) out['Mapped_unique_reads'] = mapped mapped_dups = mapped - mapped_unique out['Duplicates'] = mapped_dups out['Duplicates_pct'] = 100.0 * mapped_dups / mapped if dd.get_coverage(data): cov_bed_file = clean_file(dd.get_coverage(data), data, prefix="cov-", simple=True) merged_bed_file = bedutils.merge_overlaps(cov_bed_file, data) target_name = "coverage" else: merged_bed_file = dd.get_variant_regions_merged(data) target_name = "variant_regions" ontarget = sambamba.number_mapped_reads_on_target( data, merged_bed_file, bam_file, keep_dups=False, target_name=target_name) if mapped_unique: out["Ontarget_unique_reads"] = ontarget out["Ontarget_pct"] = 100.0 * ontarget / mapped_unique out['Offtarget_pct'] = 100.0 * (mapped_unique - ontarget) / mapped_unique padded_bed_file = bedutils.get_padded_bed_file(merged_bed_file, 200, data) ontarget_padded = sambamba.number_mapped_reads_on_target( data, padded_bed_file, bam_file, keep_dups=False, target_name=target_name + "_padded") out["Ontarget_padded_pct"] = 100.0 * ontarget_padded / mapped_unique if total_reads: out['Usable_pct'] = 100.0 * ontarget / total_reads avg_coverage = get_average_coverage(data, bam_file, merged_bed_file, target_name) out['Avg_coverage'] = avg_coverage priority = cov.priority_coverage(data, out_dir) cov.priority_total_coverage(data, out_dir) region_coverage_file = cov.coverage_region_detailed_stats(data, out_dir) # Re-enable with annotations from internally installed # problem region directory # if priority: # annotated = cov.decorate_problem_regions(priority, problem_regions) return out
def _run_coverage_qc(bam_file, data, out_dir): """Run coverage QC analysis""" out = dict() if dd.get_coverage(data): bed_file = bedutils.merge_overlaps(dd.get_coverage(data), data) target_name = "coverage" elif dd.get_variant_regions_merged(data): bed_file = dd.get_variant_regions_merged(data) target_name = "variant_regions" else: bed_file = None target_name = "wgs" bed_file = clean_file(bed_file, data, prefix="cov-", simple=True) offtarget_stats_file = calculate_offtarget_stats(bam_file, data, bed_file, target_name) if offtarget_stats_file and utils.file_exists(offtarget_stats_file): with open(offtarget_stats_file) as in_handle: stats = yaml.safe_load(in_handle) offtarget = stats.get('offtarget') mapped_unique = stats['mapped_unique'] if offtarget and mapped_unique: out['offtarget_rate'] = 1.0 * offtarget / mapped_unique mapped = stats['mapped'] if mapped: out['Duplicates'] = mapped - mapped_unique out['Duplicates_pct'] = 1.0 * (mapped - mapped_unique) / mapped total_reads = stats['total_reads'] if total_reads: out['usable_rate'] = 1.0 * (mapped_unique - offtarget) / total_reads avg_coverage = get_average_coverage(data, bam_file, bed_file, target_name) out['avg_coverage'] = avg_coverage priority = cov.priority_coverage(data, out_dir) cov.priority_total_coverage(data, out_dir) region_coverage_file = cov.coverage_region_detailed_stats(data, out_dir) # Re-enable with annotations from internally installed # problem region directory # if priority: # annotated = cov.decorate_problem_regions(priority, problem_regions) return out
def run(bam_file, data, out_dir): """Run coverage QC analysis """ out = dict() out_dir = utils.safe_makedir(out_dir) if dd.get_coverage(data) and dd.get_coverage(data) not in ["None"]: merged_bed_file = bedutils.clean_file(dd.get_coverage_merged(data), data, prefix="cov-", simple=True) target_name = "coverage" elif dd.get_coverage_interval(data) != "genome": merged_bed_file = dd.get_variant_regions_merged(data) target_name = "variant_regions" else: merged_bed_file = None target_name = "genome" avg_depth = cov.get_average_coverage(target_name, merged_bed_file, data) if target_name == "coverage": out_files = cov.coverage_region_detailed_stats(target_name, merged_bed_file, data, out_dir) else: out_files = [] out['Avg_coverage'] = avg_depth samtools_stats_dir = os.path.join(out_dir, os.path.pardir, 'samtools') from bcbio.qc import samtools samtools_stats = samtools.run(bam_file, data, samtools_stats_dir)["metrics"] out["Total_reads"] = total_reads = int(samtools_stats["Total_reads"]) out["Mapped_reads"] = mapped = int(samtools_stats["Mapped_reads"]) out["Mapped_paired_reads"] = int(samtools_stats["Mapped_paired_reads"]) out['Duplicates'] = dups = int(samtools_stats["Duplicates"]) if total_reads: out["Mapped_reads_pct"] = 100.0 * mapped / total_reads if mapped: out['Duplicates_pct'] = 100.0 * dups / mapped if dd.get_coverage_interval(data) == "genome": mapped_unique = mapped - dups else: mapped_unique = readstats.number_of_mapped_reads(data, bam_file, keep_dups=False) out['Mapped_unique_reads'] = mapped_unique if merged_bed_file: ontarget = readstats.number_of_mapped_reads(data, bam_file, keep_dups=False, bed_file=merged_bed_file, target_name=target_name) out["Ontarget_unique_reads"] = ontarget if mapped_unique: out["Ontarget_pct"] = 100.0 * ontarget / mapped_unique out['Offtarget_pct'] = 100.0 * (mapped_unique - ontarget) / mapped_unique if dd.get_coverage_interval(data) != "genome": # Skip padded calculation for WGS even if the "coverage" file is specified # the padded statistic makes only sense for exomes and panels padded_bed_file = bedutils.get_padded_bed_file( out_dir, merged_bed_file, 200, data) ontarget_padded = readstats.number_of_mapped_reads( data, bam_file, keep_dups=False, bed_file=padded_bed_file, target_name=target_name + "_padded") out["Ontarget_padded_pct"] = 100.0 * ontarget_padded / mapped_unique if total_reads: out['Usable_pct'] = 100.0 * ontarget / total_reads indexcov_files = _goleft_indexcov(bam_file, data, out_dir) out_files += [x for x in indexcov_files if x and utils.file_exists(x)] out = {"metrics": out} if len(out_files) > 0: out["base"] = out_files[0] out["secondary"] = out_files[1:] return out
def _run_coverage_qc(bam_file, data, out_dir): """Run coverage QC analysis""" out = dict() total_reads = sambamba.number_of_reads(data, bam_file) out['Total_reads'] = total_reads mapped = sambamba.number_of_mapped_reads(data, bam_file) out['Mapped_reads'] = mapped if total_reads: out['Mapped_reads_pct'] = 100.0 * mapped / total_reads if mapped: mapped_unique = sambamba.number_of_mapped_reads(data, bam_file, keep_dups=False) out['Mapped_unique_reads'] = mapped mapped_dups = mapped - mapped_unique out['Duplicates'] = mapped_dups out['Duplicates_pct'] = 100.0 * mapped_dups / mapped if dd.get_coverage(data): cov_bed_file = clean_file(dd.get_coverage(data), data, prefix="cov-", simple=True) merged_bed_file = bedutils.merge_overlaps(cov_bed_file, data) target_name = "coverage" else: merged_bed_file = dd.get_variant_regions_merged(data) target_name = "variant_regions" ontarget = sambamba.number_mapped_reads_on_target( data, merged_bed_file, bam_file, keep_dups=False, target_name=target_name) if mapped_unique: out["Ontarget_unique_reads"] = ontarget out["Ontarget_pct"] = 100.0 * ontarget / mapped_unique out['Offtarget_pct'] = 100.0 * (mapped_unique - ontarget) / mapped_unique padded_bed_file = bedutils.get_padded_bed_file( merged_bed_file, 200, data) ontarget_padded = sambamba.number_mapped_reads_on_target( data, padded_bed_file, bam_file, keep_dups=False, target_name=target_name + "_padded") out["Ontarget_padded_pct"] = 100.0 * ontarget_padded / mapped_unique if total_reads: out['Usable_pct'] = 100.0 * ontarget / total_reads avg_coverage = get_average_coverage(data, bam_file, merged_bed_file, target_name) out['Avg_coverage'] = avg_coverage priority = cov.priority_coverage(data, out_dir) cov.priority_total_coverage(data, out_dir) region_coverage_file = cov.coverage_region_detailed_stats(data, out_dir) # Re-enable with annotations from internally installed # problem region directory # if priority: # annotated = cov.decorate_problem_regions(priority, problem_regions) return out
def _run_coverage_qc(bam_file, data, out_dir): """Run coverage QC analysis""" out = dict() samtools_stats_dir = os.path.join(out_dir, os.path.pardir, out_dir) from bcbio.qc import samtools samtools_stats = samtools.run(bam_file, data, samtools_stats_dir) if "Total_reads" not in samtools_stats: return out["Total_reads"] = total_reads = int(samtools_stats["Total_reads"]) if not total_reads: return if "Mapped_reads_raw" not in samtools_stats or "Mapped_reads" not in samtools_stats: return out["Mapped_reads"] = mapped = int(samtools_stats["Mapped_reads"]) out["Mapped_reads_pct"] = 100.0 * mapped / total_reads if not mapped: return out if "Duplicates" in samtools_stats: out['Duplicates'] = dups = int(samtools_stats["Duplicates"]) out['Duplicates_pct'] = 100.0 * dups / int(samtools_stats["Mapped_reads_raw"]) else: dups = 0 if dd.get_coverage(data) and dd.get_coverage(data) not in ["None"]: cov_bed_file = bedutils.clean_file(dd.get_coverage(data), data, prefix="cov-", simple=True) merged_bed_file = bedutils.merge_overlaps(cov_bed_file, data) target_name = "coverage" elif dd.get_coverage_interval(data) != "genome": merged_bed_file = dd.get_variant_regions_merged(data) target_name = "variant_regions" else: merged_bed_file = None target_name = "genome" # Whole genome runs do not need detailed on-target calculations, use total unique mapped if dd.get_coverage_interval(data) == "genome": mapped_unique = mapped - dups else: out['Mapped_unique_reads'] = mapped_unique = sambamba.number_of_mapped_reads(data, bam_file, keep_dups=False) if merged_bed_file: ontarget = sambamba.number_of_mapped_reads( data, bam_file, keep_dups=False, bed_file=merged_bed_file, target_name=target_name) if mapped_unique: out["Ontarget_unique_reads"] = ontarget out["Ontarget_pct"] = 100.0 * ontarget / mapped_unique out['Offtarget_pct'] = 100.0 * (mapped_unique - ontarget) / mapped_unique if dd.get_coverage_interval(data) != "genome": # Skip padded calculation for WGS even if the "coverage" file is specified # the padded statistic makes only sense for exomes and panels padded_bed_file = bedutils.get_padded_bed_file(merged_bed_file, 200, data) ontarget_padded = sambamba.number_of_mapped_reads( data, bam_file, keep_dups=False, bed_file=padded_bed_file, target_name=target_name + "_padded") out["Ontarget_padded_pct"] = 100.0 * ontarget_padded / mapped_unique if total_reads: out['Usable_pct'] = 100.0 * ontarget / total_reads avg_depth = cov.get_average_coverage(data, bam_file, merged_bed_file, target_name) out['Avg_coverage'] = avg_depth region_coverage_file = cov.coverage_region_detailed_stats(data, out_dir, extra_cutoffs=set([max(1, int(avg_depth * 0.8))])) return out
def _run_coverage_qc(bam_file, data, out_dir): """Run coverage QC analysis""" out = dict() samtools_stats_dir = os.path.join(out_dir, os.path.pardir, out_dir) from bcbio.qc import samtools samtools_stats = samtools.run(bam_file, data, samtools_stats_dir) if "Total_reads" not in samtools_stats: return out["Total_reads"] = total_reads = int(samtools_stats["Total_reads"]) if not total_reads: return if "Mapped_reads_raw" not in samtools_stats or "Mapped_reads" not in samtools_stats: return out["Mapped_reads"] = mapped = int(samtools_stats["Mapped_reads"]) out["Mapped_reads_pct"] = 100.0 * mapped / total_reads if not mapped: return out if "Duplicates" in samtools_stats: out['Duplicates'] = dups = int(samtools_stats["Duplicates"]) out['Duplicates_pct'] = 100.0 * dups / int( samtools_stats["Mapped_reads_raw"]) else: dups = 0 if dd.get_coverage(data): cov_bed_file = bedutils.clean_file(dd.get_coverage(data), data, prefix="cov-", simple=True) merged_bed_file = bedutils.merge_overlaps(cov_bed_file, data) target_name = "coverage" elif dd.get_coverage_interval(data) != "genome": merged_bed_file = dd.get_variant_regions_merged(data) target_name = "variant_regions" else: merged_bed_file = None target_name = "genome" # Whole genome runs do not need detailed on-target calculations, use total unique mapped if dd.get_coverage_interval(data) == "genome": mapped_unique = mapped - dups else: out['Mapped_unique_reads'] = mapped_unique = sambamba.number_of_mapped_reads( data, bam_file, keep_dups=False) if merged_bed_file: ontarget = sambamba.number_of_mapped_reads(data, bam_file, keep_dups=False, bed_file=merged_bed_file, target_name=target_name) if mapped_unique: out["Ontarget_unique_reads"] = ontarget out["Ontarget_pct"] = 100.0 * ontarget / mapped_unique out['Offtarget_pct'] = 100.0 * (mapped_unique - ontarget) / mapped_unique if dd.get_coverage_interval(data) != "genome": # Skip padded calculation for WGS even if the "coverage" file is specified # the padded statistic makes only sense for exomes and panels padded_bed_file = bedutils.get_padded_bed_file( merged_bed_file, 200, data) ontarget_padded = sambamba.number_of_mapped_reads( data, bam_file, keep_dups=False, bed_file=padded_bed_file, target_name=target_name + "_padded") out["Ontarget_padded_pct"] = 100.0 * ontarget_padded / mapped_unique if total_reads: out['Usable_pct'] = 100.0 * ontarget / total_reads avg_depth = cov.get_average_coverage(data, bam_file, merged_bed_file, target_name) out['Avg_coverage'] = avg_depth region_coverage_file = cov.coverage_region_detailed_stats( data, out_dir, extra_cutoffs=set([max(1, int(avg_depth * 0.8))])) return out
def run(bam_file, data, out_dir): """Run coverage QC analysis """ out = dict() if dd.get_coverage(data) and dd.get_coverage(data) not in ["None"]: merged_bed_file = dd.get_coverage_merged(data) target_name = "coverage" elif dd.get_coverage_interval(data) != "genome": merged_bed_file = dd.get_variant_regions_merged(data) target_name = "variant_regions" else: merged_bed_file = None target_name = "genome" avg_depth = cov.get_average_coverage(data, bam_file, merged_bed_file, target_name) out['Avg_coverage'] = avg_depth samtools_stats_dir = os.path.join(out_dir, os.path.pardir, 'samtools') from bcbio.qc import samtools samtools_stats = samtools.run(bam_file, data, samtools_stats_dir) out["Total_reads"] = total_reads = int(samtools_stats["Total_reads"]) out["Mapped_reads"] = mapped = int(samtools_stats["Mapped_reads"]) out["Mapped_paired_reads"] = int(samtools_stats["Mapped_paired_reads"]) out['Duplicates'] = dups = int(samtools_stats["Duplicates"]) if total_reads: out["Mapped_reads_pct"] = 100.0 * mapped / total_reads if mapped: out['Duplicates_pct'] = 100.0 * dups / mapped if dd.get_coverage_interval(data) == "genome": mapped_unique = mapped - dups else: mapped_unique = sambamba.number_of_mapped_reads(data, bam_file, keep_dups=False) out['Mapped_unique_reads'] = mapped_unique if merged_bed_file: ontarget = sambamba.number_of_mapped_reads( data, bam_file, keep_dups=False, bed_file=merged_bed_file, target_name=target_name) out["Ontarget_unique_reads"] = ontarget if mapped_unique: out["Ontarget_pct"] = 100.0 * ontarget / mapped_unique out['Offtarget_pct'] = 100.0 * (mapped_unique - ontarget) / mapped_unique if dd.get_coverage_interval(data) != "genome": # Skip padded calculation for WGS even if the "coverage" file is specified # the padded statistic makes only sense for exomes and panels padded_bed_file = bedutils.get_padded_bed_file(out_dir, merged_bed_file, 200, data) ontarget_padded = sambamba.number_of_mapped_reads( data, bam_file, keep_dups=False, bed_file=padded_bed_file, target_name=target_name + "_padded") out["Ontarget_padded_pct"] = 100.0 * ontarget_padded / mapped_unique if total_reads: out['Usable_pct'] = 100.0 * ontarget / total_reads out_files = cov.coverage_region_detailed_stats(data, out_dir, extra_cutoffs=set([max(1, int(avg_depth * 0.8))])) for ext in ["coverage.bed", "summary.bed"]: out_files += [x for x in glob.glob(os.path.join(out_dir, "*%s" % ext)) if os.path.isfile(x)] indexcov_files = _goleft_indexcov(bam_file, data, out_dir) out_files += [x for x in indexcov_files if x and utils.file_exists(x)] out = {"metrics": out} if len(out_files) > 0: out["base"] = out_files[0] out["secondary"] = out_files[1:] return out