コード例 #1
0
    try:
        # The following loop does what we see in the diagram of Exercise 1:
        # acquire data, compute features, visualize raw EEG and the features
        while True:
            """ 3.1 ACQUIRE DATA """
            # Obtain EEG data from the LSL stream
            eeg_data, timestamp = inlet.pull_chunk(timeout=1,
                                                   max_samples=int(
                                                       shift_length * fs))

            # Only keep the channel we're interested in
            ch_data = np.array(eeg_data)[:, index_channel]

            # Update EEG buffer
            eeg_buffer, filter_state = BCIw.update_buffer(
                eeg_buffer, ch_data, notch=True, filter_state=filter_state)
            """ 3.2 COMPUTE FEATURES """
            # Get newest samples from the buffer
            data_epoch = BCIw.get_last_data(eeg_buffer, epoch_length * fs)

            # Compute features
            feat_vector = BCIw.compute_feature_vector(data_epoch, fs)
            feat_buffer, _ = BCIw.update_buffer(feat_buffer,
                                                np.asarray([feat_vector]))
            """ 3.3 VISUALIZE THE RAW EEG AND THE FEATURES """
            plotter_eeg.update_plot(eeg_buffer)
            plotter_feat.update_plot(feat_buffer)
            plt.pause(0.00001)

    except KeyboardInterrupt:
        print('Closing!')
コード例 #2
0
    print('Press Ctrl-C in the console to break the while loop.')

    try:
        while True:

            """ 3.1 ACQUIRE DATA """
            # Obtain EEG data from the LSL stream
            eeg_data, timestamp = inlet.pull_chunk(
                    timeout=1, max_samples=int(shift_length * fs))

            # Only keep the channel we're interested in
            ch_data = np.array(eeg_data)[:, index_channel]

            # Update EEG buffer
            eeg_buffer, filter_state = BCIw.update_buffer(
                    eeg_buffer, ch_data, notch=True,
                    filter_state=filter_state)

            """ 3.2 COMPUTE FEATURES AND CLASSIFY """
            # Get newest samples from the buffer
            data_epoch = BCIw.get_last_data(eeg_buffer,
                                            epoch_length * fs)

            # Compute features
            feat_vector = BCIw.compute_feature_vector(data_epoch, fs)
            y_hat = BCIw.test_classifier(classifier,
                                         feat_vector.reshape(1, -1), mu_ft,
                                         std_ft)
            print(y_hat)

            decision_buffer, _ = BCIw.update_buffer(decision_buffer,
コード例 #3
0
    # script with <Ctrl-C>
    print('Press Ctrl-C in the console to break the while loop.')

    try:
        while True:
            """ 3.1 ACQUIRE DATA """
            # Obtain EEG data from the LSL stream
            eeg_data, timestamp = inlet.pull_chunk(timeout=1,
                                                   max_samples=int(
                                                       shift_length * fs))

            # Only keep the channel we're interested in
            ch_data = np.array(eeg_data)[:, index_channel]

            # Update EEG buffer
            eeg_buffer, filter_state = BCIw.update_buffer(
                eeg_buffer, ch_data, notch=True, filter_state=filter_state)
            """ 3.2 COMPUTE FEATURES AND CLASSIFY """
            # Get newest samples from the buffer
            data_epoch = BCIw.get_last_data(eeg_buffer, epoch_length * fs)

            # Compute features
            feat_vector = BCIw.compute_feature_vector(data_epoch, fs)
            y_hat = BCIw.test_classifier(classifier,
                                         feat_vector.reshape(1, -1), mu_ft,
                                         std_ft)
            print(y_hat)

            decision_buffer, _ = BCIw.update_buffer(decision_buffer,
                                                    np.reshape(y_hat, (-1, 1)))
            """ 3.3 VISUALIZE THE DECISIONS """
            plotter_decision.update_plot(decision_buffer)
コード例 #4
0
    try:
        # The following loop does what we see in the diagram of Exercise 1:
        # acquire data, compute features, visualize raw EEG and the features
        while True:

            """ 3.1 ACQUIRE DATA """
            # Obtain EEG data from the LSL stream
            eeg_data, timestamp = inlet.pull_chunk(
                    timeout=1, max_samples=int(shift_length * fs))

            # Only keep the channel we're interested in
            ch_data = np.array(eeg_data)[:, index_channel]

            # Update EEG buffer
            eeg_buffer, filter_state = BCIw.update_buffer(
                    eeg_buffer, ch_data, notch=True,
                    filter_state=filter_state)

            """ 3.2 COMPUTE FEATURES """
            # Get newest samples from the buffer
            data_epoch = BCIw.get_last_data(eeg_buffer,
                                            epoch_length * fs)

            # Compute features
            feat_vector = BCIw.compute_feature_vector(data_epoch, fs)
            feat_buffer, _ = BCIw.update_buffer(feat_buffer,
                                                np.asarray([feat_vector]))

            """ 3.3 VISUALIZE THE RAW EEG AND THE FEATURES """
            plotter_eeg.update_plot(eeg_buffer)
            plotter_feat.update_plot(feat_buffer)
コード例 #5
0
ファイル: realtime.py プロジェクト: AyrusCode/MusePCA
            """ 3.1 ACQUIRE DATA """
            # Beep
            aud1.stop()        
            aud1.play()
            
            # Obtain EEG data from the LSL stream
            eeg_data, timestamp = inlet.pull_chunk(
                    timeout=1, max_samples=int(shift_length * fs))

            # Only keep the channel we're interested in
            ch_data = np.array(eeg_data)[:, index_channel]

            # Update EEG buffer
            eeg_buffer, filter_state = BCIw.update_buffer(
                    eeg_buffer, ch_data, notch=True,
                    filter_state=filter_state)

            """ 3.2 COMPUTE FEATURES """
            # Get newest samples from the buffer
            data_epoch = utils.get_last_data(eeg_buffer,
                                             epoch_length * fs)

            # Classify Epoch
            example = np.expand_dims(data_epoch, axis=0)
            example = torch.from_numpy(example)
            example = example.type(torch.FloatTensor)
            output = nntrace(example)
            
            if output[0,1] > output[0,0]:
                label = "Up"
コード例 #6
0
#%% Start pulling data
mules_client.flushdata()  # Flush old data from MuLES

# The try/except structure allows to quit the while loop by aborting the
# script with <Ctrl-C>
print(' Press Ctrl-C in the console to break the While Loop')
try:

    # The following loop does what we see in the diagram of Exercise 1:
    # acquire data, compute features, visualize the raw EEG and the features
    while True:

        """ 1- ACQUIRE DATA """
        eeg_data = mules_client.getalldata()   # Obtain EEG data from MuLES
        eeg_data = eeg_data[:, indexes_channel]              # Removes unwanted channels
        eeg_buffer = BCIw.update_buffer(eeg_buffer, eeg_data)[0] # Update EEG buffer

        # filter here
        eeg_buffer_f = lfilter(b, a, eeg_buffer, axis=0)
        
        # Compute PSD for buffer
        eeg_buffer_psd = experiment.psd_fft(eeg_buffer_f, fs)[0]
        
        # Select the last win_test_secs seconds to perform task
        test_eeg = eeg_buffer_f[(-win_test_secs*fs):,:]
        
        """ 2- COMPUTE FEATURES """
        value = CalculaCCA(test_eeg.T)

        """ 3- VISUALIZE THE RAW EEG AND THE FEATURES """
        plotter_time.update_plot(eeg_buffer) # Plot EEG buffer in time domain