#plt.xlim([0,min((W>0).sum(axis=0).max(),pij.sum(axis=0).max())]) #plt.ylim([0,min((W>0).sum(axis=0).max(),pij.sum(axis=0).max())]) plt.subplot(2,3,5) plt.plot(W.sum(axis=0),wij.sum(axis=0), 'b.') plt.plot(np.linspace(0,wij.sum(axis=0).max()),np.linspace(0,wij.sum(axis=0).max()),'r-') plt.title('$ s_i - <s_i>$') plt.axis('equal') #plt.xlim([0,wij.sum(axis=0).max()]) #plt.ylim([0,wij.sum(axis=0).max()]) plt.grid(True) plt.ylabel('model') plt.xlabel('empirical') plt.tight_layout() plt.show() if __name__=='__main__': thresh = 0.2 # threshold T = 200 # number of time points to sample eta = 3.0 # localnoise mu = 1.0 # globalnoise C = np.arctanh(factor_model([1]*40 + [2]*40 + [3]*30, T, eta, mu, True)) At = bct.threshold_absolute(C, thresh) n=len(At) k = (At>0).sum(axis=0) s = At.sum(axis=0) x,y = inference_cEWRGt(At, thresh) plot_results(At, x, y, thresh)
print ' e.g. average_lh_inflated 0.0' sys.exit() root_fname = sys.argv[1] #nw_fname = sys.argv[2] nw_fname = "1X4I9DF0_adjacency_matrix_pcc.txt" threshold = float(sys.argv[2]) print 'threshold=',threshold adjMtx = np.genfromtxt(nw_fname, delimiter='\t') """Rubinov,Sporns 2010: all self-connections or negative connections (such as functional anticorrelations) must currently be removed from the networks prior to analysis""" bct.threshold_absolute(adjMtx,threshold) # NB! be sure to put before masking the matrix [Ci,Q]=bct.modularity_und(adjMtx) roi_legend = 'roi_legend.txt' try: fp_roi =open(roi_legend, 'r') except: print("Error opening " + roi_legend) # Create a dictionary mapping ID --> RGB vc = {} # vertex color dictionary count = 0 # colors (rgb) for modules (Q: what's the max # of modules we'll have??) # rf. http://www.rapidtables.com/web/color/RGB_Color.htm
def test_threshold_absolute(): x = load_sample() x = bct.threshold_absolute(x, 2.1) assert np.allclose(np.sum(x), 13280.17768104)
#mc=[['255 0 0'],['0 255 0'],['0 0 255'],['255 255 0'],['0 255 255']] threshVal=0.3 threshVal=0.0 threshVal=input("Enter threshold: ") #testDir = '/Users/heiland/Documents/Heiland/BioVis14/contest_subject_networks/' #fname = 'U050E1IO_adjacency_matrix_pcc.txt' fname = '1X4I9DF0_adjacency_matrix_pcc.txt' #d = np.genfromtxt(testDir + fname, delimiter='\t') try: A = np.genfromtxt(fname, delimiter='\t') except: print "Error opening " + fname bct.threshold_absolute(A,threshVal) # Calculate the network's modularity [Ci,Q]=bct.modularity_und(A) print Ci for i in range(len(Ci)): for j in range(i+1,len(Ci)): # print i,j if Ci[i] > Ci[j]: temp = Ci[i] Ci[i] = Ci[j] Ci[j] = temp print str(i) + ' <-> ' + str(j) A[[i,j]] = A[[j,i]] # swap rows A[:,[i,j]] = A[:,[j,i]] # swap cols