コード例 #1
0
    def rebin_profile(self, nbins=300, plot=False):

        x, y, e = bu.rebin(self.profile[0], self.profile[1], \
                           errs=self.profile[2], nbins=nbins, \
                           plot=plot)
        self.profile = [x, y, e]
        self.prof_dx = np.abs(x[1] - x[0])

        x2, y2, e2 = bu.rebin(self.integral[0], self.integral[1], \
                              errs=self.integral[2], nbins=nbins, \
                              plot=plot)
        self.integral = [x2, y2, e2]
        self.int_dx = np.abs(x2[1] - x2[0])
コード例 #2
0
def profile(fname, data_column=0, plot=False, nbins=200):
    df = bu.DataFile()
    df.load(fname, skip_fpga=True)
    df.load_other_data()
    df.calibrate_stage_position()

    dt = 1.0 / df.fsamp

    if 'ysweep' in fname:
        stage_column = 1
        if not ysign:
            sign = 1.0
        else:
            sign = ysign
    else:
        stage_column = 0
        sign = 1.0

    b, a = sig.butter(1, 0.5)

    if plot:
        shape = np.shape(df.other_data)
        for i in range(shape[0]):
            plt.plot(df.other_data[i, :], label=str(i))
            plt.title('Data Columns')
        plt.legend()
        plt.tight_layout()

        plt.figure()
        for j in range(3):
            plt.plot(df.cant_data[j, :], label=str(j))
            plt.title('Attractor Coordinates')
        plt.legend()
        plt.tight_layout()

        plt.show()

        input()

    h = np.mean(df.cant_data[2, :])
    h_round = bu.round_sig(h, sig=3)

    if h_round < 10.0:
        h_round = bu.round_sig(h_round, sig=2)

    int_filt = sig.filtfilt(b, a, df.other_data[data_column])
    proft = np.gradient(int_filt)

    # proft = np.gradient(df.other_data[data_column])

    #plt.plot(df.other_data[0])
    #plt.show()

    stage_filt = sig.filtfilt(b, a, df.cant_data[stage_column, :])
    dir_sign = np.sign(np.gradient(stage_filt)) * sign

    dir_sign = np.sign(np.gradient(df.cant_data[stage_column])) * sign

    xvec = df.cant_data[stage_column, :]
    yvec = (proft - proft * dir_sign) * 0.5 - (proft + proft * dir_sign) * 0.5

    # sort_inds = np.argsort(xvec)

    # b, y, e = bu.spatial_bin(xvec, yvec, dt, nbins=300, nharmonics=300, add_mean=True)
    b, y, e = bu.rebin(xvec[vec_inds[0]:vec_inds[1]], \
                       yvec[vec_inds[0]:vec_inds[1]], \
                       nbins=nbins, plot=False, correlated_errs=True)

    return b, y, e, h_round
コード例 #3
0
            if not first:
                lower_ind = np.argmax(np.abs(lib))
                first = True
            else:
                lower_ind = 0

            if initial_offset and times[i] < initial_offset:
                continue

            upper_ind = np.argmin(np.abs(tvec + times[i] - ringdown_fit_time))

            fit_time = tvec[lower_ind:upper_ind] + times[i]
            fit_amp = amp[lower_ind:upper_ind]

            fit_time_rebin, fit_amp_rebin, fit_err_rebin = \
                    bu.rebin(fit_time, fit_amp, nbins=nbins, plot=plot_rebin, \
                             correlated_errs=True)

            fit_times.append(fit_time_rebin)
            fit_amps.append(fit_amp_rebin)
            fit_errs.append(fit_err_rebin)

    print('Fitting ringdown...', end=' ')
    sys.stdout.flush()

    fit_x = np.concatenate(fit_times)
    fit_y = np.concatenate(fit_amps)
    fit_err = np.concatenate(fit_errs)

    plot_x = np.linspace(fit_x[0], fit_x[-1], 500)

    fit_func = lambda x, amp0, t0, tau, c: amp0 * np.exp(-1.0 *
コード例 #4
0
def analyze_file(fname, nbins=500, grad_thresh=10, use_highp_bara=True, plot_pressures=False, \
                 plot_raw_data=False, find_dipole=True):

    phases = get_delta_phi(fname)
    phase_errs = get_delta_phi_err(fname)
    pressures = get_pressure(fname)
    times = get_time(fname)
    field_data = get_field_data(fname)

    rot_freq = np.mean(field_data['field_freq'])
    rot_freq_err = np.std(field_data['field_freq'])
    rot_amp = np.mean(field_data['field_amp'])
    rot_amp_err = np.std(field_data['field_amp'])

    # plt.figure()
    # plt.plot(field_data['field_amp'])
    # plt.figure()
    # plt.plot(field_data['field_freq'])
    # plt.show()

    pressures_real, pressures_smooth = build_full_pressure(pressures, plot=plot_pressures, \
                                                           use_highp_bara=use_highp_bara)

    sort_inds = np.argsort(pressures_real)

    phases = phases[sort_inds]
    phase_errs = phase_errs[sort_inds]
    pressures_real = pressures_real[sort_inds]
    #plt.errorbar(pressures_real, phases, yerr=phase_errs, ms=2)
    #plt.show()

    # phases_start = phases[:50]
    # phases_start = np.unwrap( 2.0 * phases_start ) / 2.0
    # plt.plot(phases[:50])
    # plt.plot(phases_start)
    # plt.show()

    # Compute the initial phase for offsetting so arcsin(phi0) = 0
    phi0 = np.mean(phases[:5])

    # Find where we lose lock by looking for sharp derivative
    raw_grad = np.gradient(np.unwrap(2.0 * phases))
    #plt.show()

    init_ind = int(np.max([10.0, 0.01*len(raw_grad)]))

    raw_grad_init = np.std(raw_grad[:init_ind])
    raw_grad -= np.mean(raw_grad[:init_ind])

    bad_inds = np.array(list(range(len(raw_grad))))[np.abs(raw_grad) > grad_thresh * raw_grad_init]
    
    lock_lost_ind = -1
    # Make sure we didn't just find an anomolous fluctuation
    for indind, ind in enumerate(bad_inds):
        if ind == bad_inds[-2]:
            lock_lost_ind = -1
            break
        delta = np.abs(ind - bad_inds[indind+1])
        if delta < 10:
            delta2 = np.abs(bad_inds[indind+1] - bad_inds[indind+2])
            if delta2 < 10:
                lock_lost_ind = ind
                break

    p_outgassing = (times[lock_lost_ind] - times[0]) * 1e-9 * outgassing_rate

    # Reconstruct phase difference of fundamental rotation by 
    # unwrapping data prior to losing lock, then using the raw
    # data after losing lock
    uphases = np.unwrap(2.0*phases) / 2.0

    init_offset = np.mean(uphases[:10])
    uphases -= init_offset

    uphases[lock_lost_ind:] = phases[lock_lost_ind:]

    if plot_raw_data:
        plt.scatter(pressures_real, uphases, s=100)
        plt.axvline(pressures_real[lock_lost_ind])
        plt.show()

    fit_pressures = pressures_real[:lock_lost_ind-2]
    fit_uphases = uphases[:lock_lost_ind-2]
    fit_errs = phase_errs[:lock_lost_ind-2]

    fit_pressures_2, fit_uphases_2, fit_errs_2 = \
            bu.rebin(fit_pressures, fit_uphases, errs=fit_errs, nbins=50)

    #plt.errorbar(pressures_real, uphases, yerr=phase_errs)
    #plt.errorbar(fit_pressures_2, fit_uphases_2, yerr=fit_errs_2)
    #plt.axvline(pressures_real[lock_lost_ind-2])
    #plt.show()
    
    zero_inds = np.where(fit_errs_2 == 0.0)
    non_zero_inds = np.invert(zero_inds)
    fit_errs_2[zero_inds] += np.sqrt(np.mean( fit_errs_2[non_zero_inds]**2 ))

    p0 = [1.1*pressures_real[lock_lost_ind-2], 0]

    if not np.sum(np.isnan(fit_uphases_2)):
        fit_pressures = fit_pressures_2
        fit_uphases = fit_uphases_2
        fit_errs = fit_errs_2

    pphi, covphi = curve_fit(phi_ffun, fit_pressures, fit_uphases, sigma=fit_errs, p0 = p0, \
                             bounds=([0.005, -0.5], [1.5*pressures_real[lock_lost_ind-2], 0.5]), \
                             maxfev=10000)

    param_arr = np.linspace(pphi[0]*0.99, pphi[0]*1.01, 200)
    def nll(param):
        inds = fit_pressures < param
        resid = np.abs(fit_uphases[inds]-pphi[1] - phi_ffun(fit_pressures[inds], param, 0))
        return (1. / (np.sum(inds) - 1)) * np.sum(resid**2 / fit_errs[inds]**2)

    pmax, pmax_err, min_chi = bu.minimize_nll(nll, param_arr, plot=False)

    uphases -= pphi[1]

    cut_inds = pressures_real< 1.2*pmax

    pressures_cut = pressures_real[cut_inds]
    uphases_cut = uphases[cut_inds]

    rand_phase_ind = np.argmin( np.abs(pressures_cut - pphi[0]) )
    #print rand_phase_ind
    #print filname
    #plt.plot(pressures_cut, uphases_cut)
    #plt.show()

    pressures_out_1, uphases_out_1, errs_out_1 = bu.rebin(pressures_cut[:rand_phase_ind], \
                                                          uphases_cut[:rand_phase_ind], \
                                                          nbins=nbins)

    pressures_out_2 = pressures_cut[rand_phase_ind:]
    uphases_out_2 = uphases_cut[rand_phase_ind:]
    
    # print 'pmax uncertainty: ', pmax_err / pmax

    return np.array([np.concatenate((pressures_out_1, pressures_out_2)), \
                     np.concatenate((uphases_out_1, uphases_out_2))]), \
                     pmax, pmax_err, p_outgassing, rot_freq, rot_freq_err, \
                     rot_amp, rot_amp_err
コード例 #5
0
                                                  guess=7e-3)

#x_d, x_prof, x_popt = chopfuncs.profile(xfilobj, raw_dat_col = 0, \
#                                        return_pos = True, numbins = 500, \
#                                        fit_intensity = True, plot_peaks=False)
#y_d, y_prof, y_popt = chopfuncs.profile(yfilobj, raw_dat_col = 0, \
#                                        return_pos = True, numbins = 500, \
#                                        fit_intensity = True, plot_peaks=False)

x_prof = x_prof / x_popt[0]
y_prof = y_prof / y_popt[0]

x_popt[0] = 1.0
y_popt[0] = 1.0

binned_x_d, binned_x_prof, x_errs = bu.rebin(x_d, x_prof, nbins=200)
binned_y_d, binned_y_prof, y_errs = bu.rebin(y_d, y_prof, nbins=200)

print("X diam (2 * waist): ", x_popt[-1] * 1e3 * 2)
print("Y diam (2 * waist): ", y_popt[-1] * 1e3 * 2)

print()

print("X waist: ", x_popt[-1] * 1e3)
print("Y waist: ", y_popt[-1] * 1e3)

print()

#LP_p0 = [1, 0.001]
#final_x_LP_popt, final_x_LP_pcov = \
#        opti.curve_fit(chopfuncs.bessel_intensity, \