def gaussian_beam(fwhm=10): """Display a Gaussian beam at the given fwhm. Parameters ---------- fwhm : float Full width at half maximum (for intensity not amplitude) (µm). """ w = fwhm / np.sqrt(2 * np.log(2)) bpm = Bpm(1, 1, 1, 1, 1, 1, 1) bpm.x = np.linspace(-1.5*fwhm, 1.5*fwhm, 500) x = bpm.x plt.figure("Beam") plt.title("Width definition of a gaussian beam with FWHM=%s µm" % fwhm) plt.xlabel("x (µm)") plt.plot(x, bpm.gauss_light(fwhm, 0), label='field') plt.plot(x, (bpm.gauss_light(fwhm, 0))**2, label='intensity') plt.plot(x, [1/2]*x.size, '-.', label='1/2') plt.plot([fwhm/2]*x.size, np.linspace(0, 1, x.size), '--', label='fwhm/2') plt.plot(x, [np.exp(-1)]*x.size, '-.', label='1/e') plt.plot(x, [np.exp(-2)]*x.size, '-.', label='1/$e^2$') plt.plot([w]*x.size, np.linspace(0, 1, x.size), '--', label='$w_0$=%.2f' % w) plt.legend() plt.show()
def guides_x(): """Display a Gaussian guide, two super-Gaussian guides and a flat-top guide to illustrate the width definition.""" width = 10 bpm = Bpm(1, 1, 1, 1, 1, 1, 1) bpm.x = np.linspace(-15, 9.1, 500) x = bpm.x plt.figure("guide_x") plt.title("Different waveguides shape available") plt.plot(x, bpm.gauss_guide(width, 1)(x), label='Gaussian') plt.plot(x, bpm.gauss_guide(width, 4)(x), label='super-Gaussian P=4') plt.plot(x, bpm.gauss_guide(width, 10)(x), label='super-Gaussian P=10') plt.plot(x, bpm.squared_guide(width)(x), label='Flat-top') plt.plot([width/2]*x.size, np.linspace(0, 1, x.size), '--', label='width/2') plt.plot(x, [np.exp(-1)]*x.size, '-.', label='1/e') plt.legend() plt.show()
def show_grid(): """Show the computation grid and the displayed grid""" length_z = 10 dist_z = 1 nbr_z_disp = 6 length_x = 10 dist_x = 1 bpm = Bpm(1, 1, length_z, dist_z, nbr_z_disp, nbr_z_disp, dist_x) print("Initial values") print("length_z=%f, nbr_z=%f, nbr_z_disp=%f, length_x=%f, nbr_x=%f" % ( length_z, length_z/dist_z, nbr_z_disp, length_x, length_x/dist_x)) [length_z, nbr_z, nbr_z_disp, length_x, nbr_x, x] = bpm.create_x_z() print("Corrected values") print("length_z=%f, nbr_z=%f, nbr_z_disp=%f, length_x=%f, nbr_x=%f" % ( length_z, nbr_z, nbr_z_disp, length_x, nbr_x)) dn = np.zeros((nbr_z, nbr_x)) z = np.linspace(0, length_z, nbr_z) z_disp = np.linspace(0, length_z, nbr_z_disp+1) dn_disp = np.linspace(0, nbr_z-1, nbr_z_disp+1, dtype=int) xv1, zv1 = np.meshgrid(x, z) xv2, zv2 = np.meshgrid(x, z_disp) plt.figure() ax1 = plt.subplot(121) ax1.set_title("Computation grid") ax1.set_xlabel("x (µm)") ax1.set_ylabel("z (µm)") ax1.pcolormesh(xv1, zv1, dn, cmap='gray', edgecolor="w") ax1.annotate("", xy=(-dist_x, 1.8*dist_z), xytext=(0., 1.8*dist_z), arrowprops=dict(arrowstyle="<|-|>", connectionstyle="arc3", color='w')) ax1.text(-dist_x/2, 1.3*dist_z, "dist_x", {'color': 'black', 'fontsize': 12, 'ha': 'center', 'va': 'center', 'bbox': dict(boxstyle="round", fc="white", ec="black", pad=0.2)}) ax1.annotate("", xy=(-1.2*dist_x, 2*dist_z), xytext=(-1.2*dist_x, 3*dist_z), arrowprops=dict(arrowstyle="<|-|>", connectionstyle="arc3", color='w')) ax1.text(-1.5*dist_x, 2.5*dist_z, "dist_z", {'color': 'black', 'fontsize': 12, 'ha': 'right', 'va': 'center', 'bbox': dict(boxstyle="round", fc="white", ec="black", pad=0.2)}) ax2 = plt.subplot(122) ax2.set_title("Displayed grid") ax2.set_xlabel("x (µm)") ax2.pcolormesh(xv2, zv2, dn[dn_disp], cmap='gray', edgecolor="w") ax2.annotate("", xy=(-dist_x, 1.85*bpm.pas), xytext=(0., 1.85*bpm.pas), arrowprops=dict(arrowstyle="<|-|>", connectionstyle="arc3", color='w')) ax2.text(-dist_x/2, 1.6*bpm.pas, "dist_x", {'color': 'black', 'fontsize': 12, 'ha': 'center', 'va': 'center', 'bbox': dict(boxstyle="round", fc="white", ec="black", pad=0.2)}) ax2.annotate("", xy=(-1.2*dist_x, 2*bpm.pas), xytext=(-1.2*dist_x, 3*bpm.pas), arrowprops=dict(arrowstyle="<|-|>", connectionstyle="arc3", color='w')) ax2.text(-1.5*dist_x, 2.5*bpm.pas, "pas", {'color': 'black', 'fontsize': 12, 'ha': 'right', 'va': 'center', 'bbox': dict(boxstyle="round", fc="white", ec="black", pad=0.2)}) plt.show()
def guides_z(): """Display an array of guides and the curved guides system.""" width = 6 bpm = Bpm(2, 1.55, 10000, 1, 200, 100, 0.1) [length_z, nbr_z, nbr_z_disp, length_x, nbr_x, x] = bpm.create_x_z() shape = bpm.gauss_guide(width, 4) [peaks, dn] = bpm.create_guides(shape, 0.01, 5, 10) z_disp = np.linspace(0, length_z/1000, nbr_z_disp+1) xv, zv = np.meshgrid(x, z_disp) dn_disp = np.linspace(0, nbr_z-1, nbr_z_disp+1, dtype=int) plt.figure("Waveguide array") plt.title("Waveguides array example") plt.xlabel("x (µm)") plt.ylabel("z (mm)") plt.pcolormesh(xv, zv, dn[dn_disp], cmap='gray') plt.show() # plt.savefig("waveguide_array.png", bbox="tight", dpi=250) [peaks, dn] = bpm.create_curved_guides( shape, width, 0.01, 40*1e-8, 1000, 1.2) plt.figure("Curved wavewaveguides") plt.title("Curved waveguides example") plt.xlabel("x (µm)") plt.ylabel("z (mm)") plt.pcolormesh(xv, zv, dn[dn_disp], cmap='gray') plt.show() # plt.savefig("waveguide_curved.png", bbox="tight", dpi=250) shape = bpm.gauss_guide(width, 4) dn = bpm.create_guides(shape, 0.01, 1, 10, z=[0, length_z/2])[1] dn2 = bpm.create_guides(shape, 0.01, 2, 10, z=[length_z/2, length_z])[1] dn3 = bpm.create_guides(shape, 0.01, 2, 30, z=[length_z/4, 3*length_z/4])[1] dn4 = bpm.create_guides(shape, 0.01, 1, 0, offset_guide=40)[1] dn = np.add(dn, dn2) dn = np.add(dn, dn3) dn = np.add(dn, dn4) z_disp = np.linspace(0, length_z/1000, nbr_z_disp+1) xv, zv = np.meshgrid(x, z_disp) dn_disp = np.linspace(0, nbr_z-1, nbr_z_disp+1, dtype=int) plt.figure("Arbitrary waveguides example") plt.title("Arbitrary waveguides example with discontinuity") plt.xlabel("x (µm)") plt.ylabel("z (mm)") plt.pcolormesh(xv, zv, dn[dn_disp], cmap='gray') plt.show()
def test_kerr(): """More test than example. Show different approximations for the BPM implementation of the Kerr effect.""" no = 1 lo = 1.5 length_z = 50 dist_z = 0.1 nbr_z_disp = 1 dist_x = 0.01 length_x = 400 bpm = Bpm(no, lo, length_z, dist_z, nbr_z_disp, length_x, dist_x) [length_z, nbr_z, nbr_z_disp, length_x, nbr_x, x] = bpm.create_x_z() dn = np.zeros((nbr_z, nbr_x)) fwhm = 6 field = bpm.gauss_light(fwhm) irrad = 260e13 # if too high, see big difference between method theta_ext = 0 [progress_pow] = bpm.init_field(field, theta_ext, irrad) # Need to overwrite those variables due to changes theta = asin(sin(radians(theta_ext)) / no) # angle in the guide nu_max = 1 / (2 * dist_x) # max frequency due to sampling # Spacial frequencies over x (1/µm) nu = np.linspace(-nu_max, nu_max*(1 - 2/nbr_x), nbr_x) intermed = no * cos(theta) / lo fr = -2 * pi * nu**2 / (intermed + np.sqrt( intermed**2 - nu**2 + 0j)) bpm.phase_mat = fftshift(np.exp(1j * dist_z * fr)) bpm.phase_mat_demi = fftshift(np.exp(1j * dist_z / 2 * fr)) bpm.nl_mat = bpm.ko * bpm.dist_z * dn # End overwrite kerr_loop = 10 chi3 = 10 * 1E-20 nbr_step = nbr_z-1 print("\n dz/2+lens+dz/2") field = bpm.field for i in range(nbr_step): # Linear propagation over dz/2 field = ifft(bpm.phase_mat_demi * fft(field)) # Influence of the index modulation on the field field = field * np.exp(1j * bpm.nl_mat[nbr_step, :]) # No changes if # no initial guide (exp=1) # Linear propagation over dz/2 field = ifft(bpm.phase_mat_demi * fft(field)) cur_pow = bpm.epnc * abs2(field) field_ref = field cur_ref = cur_pow print("\n dz+kerr") field = bpm.field for i in range(nbr_step): # Linear propagation over dz field = ifft(bpm.phase_mat * fft(field)) # Influence of the index modulation on the field field_x = field * np.exp(1j * bpm.nl_mat[nbr_step, :]) cur_pow = bpm.epnc * abs2(field_x) for k in range(1): # insensitive to correction loop prev_pow = cur_pow # influence of the beam intensity on the index modulation dn_temp = dn[nbr_step, :] + (3*chi3)/(8*no)*(prev_pow/bpm.epnc) nl_mat = bpm.ko * bpm.dist_z * dn_temp # influence of the index modulation on the field field_x = field * np.exp(1j*nl_mat) # No changes for the pow cur_pow = bpm.epnc * abs2(field_x) try: bpm.variance(prev_pow, cur_pow) except ValueError as error: print(error) field = field_x field_1 = field cur_1 = cur_pow dn_1 = dn_temp print("\n dz/2+kerr+dz/2") field = bpm.field for i in range(nbr_step): # Linear propagation over dz/2 field = ifft(bpm.phase_mat_demi * fft(field)) # Influence of the index modulation on the field field_x = field * np.exp(1j * bpm.nl_mat[nbr_step, :]) # Linear propagation over dz/2 field_x = ifft(bpm.phase_mat_demi * fft(field_x)) cur_pow = bpm.epnc * abs2(field_x) for k in range(kerr_loop): prev_pow = cur_pow # influence of the beam intensity on the index modulation dn_temp = dn[nbr_step, :] + (3*chi3)/(8*no)*(prev_pow/bpm.epnc) nl_mat = bpm.ko * bpm.dist_z * dn_temp # influence of the index modulation on the field field_x = field * np.exp(1j * nl_mat) # Linear propagation over dz/2 field_x = ifft(bpm.phase_mat_demi * fft(field_x)) cur_pow = bpm.epnc * abs2(field_x) try: bpm.variance(prev_pow, cur_pow) except ValueError as error: print(error) field = field_x field_2 = field cur_2 = cur_pow dn_2 = dn_temp print("\n kerr+dz") field = bpm.field for i in range(nbr_step): # Influence of the index modulation on the field field_x = field * np.exp(1j * bpm.nl_mat[nbr_step, :]) # Linear propagation over dz field_x = ifft(bpm.phase_mat * fft(field_x)) cur_pow = bpm.epnc * abs2(field_x) for k in range(kerr_loop): prev_pow = cur_pow # influence of the beam intensity on the index modulation dn_temp = dn[nbr_step, :] + (3*chi3)/(8*no)*(prev_pow/bpm.epnc) nl_mat = bpm.ko * bpm.dist_z * dn_temp # influence of the index modulation on the field field_x = field * np.exp(1j * nl_mat) # Linear propagation over dz field_x = ifft(bpm.phase_mat * fft(field_x)) cur_pow = bpm.epnc * abs2(field_x) try: bpm.variance(prev_pow, cur_pow) except ValueError as error: print(error) field = field_x field_3 = field cur_3 = cur_pow dn_3 = dn_temp plt.figure(num="Impact order kerr") ax1 = plt.subplot(211) ax2 = plt.subplot(212) ax1.set_title("phase: comparison") ax2.set_title("power: comparison") ax1.set_xlim(-15, 15) ax2.set_xlim(-15, 15) ax1.plot(x, np.angle(field_ref), label="no kerr") ax1.plot(x, np.angle(field_1), label="dz+kerr") ax1.plot(x, np.angle(field_2), label="dz/2+kerr+dz/2") ax1.plot(x, np.angle(field_3), label="kerr+dz") ax2.plot(x, cur_ref, label="no kerr") ax2.plot(x, cur_1, label="dz+kerr") ax2.plot(x, cur_2, label="dz/2+kerr+dz/2") ax2.plot(x, cur_3, label="kerr+dz") ax1.legend(loc="upper right") ax2.legend(loc="upper right") plt.show() dn_ref = dn[nbr_step, :] plt.figure(num="Impact on dn order kerr") ax1 = plt.subplot(111) ax1.set_title("dn: comparison") ax1.set_xlim(-15, 15) ax1.plot(x, dn_ref, label="no kerr") ax1.plot(x, dn_1, label="dz+kerr") ax1.plot(x, dn_2, label="dz/2+kerr+dz/2") ax1.plot(x, dn_3, label="kerr+dz") ax1.legend(loc="upper right") plt.show()
def stability(): """Show the possible BPM approximations for implementing a refractive index variation""" width = 6 no = 2.14 wavelength = 1.55 delta_no = 0.0014 length_z = 200 dist_z = 1 nbr_z_disp = 1 dist_x = 0.2 length_x = 1000 bpm = Bpm(no, wavelength, length_z, dist_z, nbr_z_disp, length_x, dist_x) [length_z, nbr_z, nbr_z_disp, length_x, nbr_x, x] = bpm.create_x_z() shape = bpm.squared_guide(width) nbr_p = 1 p = 0 [peaks, dn] = bpm.create_guides(shape, delta_no, nbr_p, p) fwhm = 6 lo = 1.5 field = bpm.gauss_light(fwhm) irrad = 1 theta_ext = 0 [progress_pow] = bpm.init_field(field, theta_ext, irrad) nbr_step = nbr_z-1 # Need to overwrite those variables due to changes theta = asin(sin(radians(theta_ext)) / no) # angle in the guide nu_max = 1 / (2 * dist_x) # max frequency due to sampling # Spacial frequencies over x (1/µm) nu = np.linspace(-nu_max, nu_max * (1 - 2/nbr_x), nbr_x) intermed = no * cos(theta) / lo fr = -2 * pi * nu**2 / (intermed + np.sqrt( intermed**2 - nu**2 + 0j)) bpm.phase_mat = fftshift(np.exp(1j * dist_z * fr)) bpm.phase_mat_demi = fftshift(np.exp(1j * dist_z / 2 * fr)) bpm.nl_mat = bpm.ko * bpm.dist_z * dn # End overwrite field = bpm.field for i in range(nbr_step): field = ifft(bpm.phase_mat * fft(field)) field *= np.exp(1j * bpm.nl_mat[nbr_step, :]) test1 = field field = bpm.field for i in range(nbr_step): field = ifft(bpm.phase_mat_demi * fft(field)) field *= np.exp(1j * bpm.nl_mat[nbr_step, :]) field = ifft(bpm.phase_mat_demi * fft(field)) test2 = field field = bpm.field for i in range(nbr_step): field *= np.exp(1j * bpm.nl_mat[nbr_step, :]) field = ifft(bpm.phase_mat * fft(field)) test3 = field plt.figure("Power") plt.title("Power: Impact of the chosen algorithm on the free propagation") plt.xlim(-20, 20) # plt.ylim(-1, 350) plt.plot(x, abs2(test1), label='dz+lens') plt.plot(x, abs2(test2), label='dz/2+lens+dz/2') plt.plot(x, abs2(test3), label='lens+dz') plt.legend() plt.show() plt.figure("Phase") plt.title("Phase: Impact of the chosen algorithm on the free propagation") plt.xlim(-30, 30) plt.plot(x, np.angle(test1), label='dz+lens') plt.plot(x, np.angle(test2), label='dz/2+lens+dz/2') plt.plot(x, np.angle(test3), label='lens+dz') plt.legend() plt.show()
def benchmark_kerr(): """Kerr benchmark by looking at the critical power at which a beam become a soliton. Several test were done with this function and for now, it seems that the critical power find by the simulations is about 85% of the theorical value. Meaning a 15% error. Further tests are needed to understand the observed differences.""" width = 0 no = 1 wavelength = 4 delta_no = 0.000 length_z = 1000 dist_z = 0.5 nbr_z_disp = 200 dist_x = 0.05 length_x = 500 nbr_p = 1 p = 20 fwhm = 12 theta_ext = 0 n2 = 2.44e-20 alpha = 1.8962 # gaussian beam # See Self-focusing on wiki P_c = alpha*(wavelength*1e-6)**2/(4*pi*no*n2) print("critical power = %.2e W" % P_c) # irrad = 5e3*1e13 # power = irrad * (fwhm*1e-6)**2 * pi / (4*np.log(2)) # print("power", power) # See Gaussian_beam on wiki on beam power w = fwhm*1e-6 / sqrt(2*log(2)) irrad_cri = 2*P_c/(pi*w**2) print("Critical irradiance %.2e W/m^2" % irrad_cri) bpm = Bpm(no, wavelength, length_z, dist_z, nbr_z_disp, length_x, dist_x) [length_z, nbr_z, nbr_z_disp, length_x, nbr_x, x] = bpm.create_x_z() shape = bpm.gauss_guide(width, 4) sweep = (1, 0.2*irrad_cri, 0.5*irrad_cri, 0.7*irrad_cri, 0.75*irrad_cri, 0.8*irrad_cri, 0.85*irrad_cri, # 0.85 seem correct 0.9*irrad_cri, irrad_cri ) for i, irrad in enumerate(sweep): power = irrad/2 * (pi*w**2) print(i+1, "/", len(sweep), "\tpower= %.2e W" % power, sep="") [peaks, dn] = bpm.create_guides(shape, delta_no, nbr_p, p) field = bpm.gauss_light(fwhm) [progress_pow] = bpm.init_field(field, theta_ext, irrad) [progress_pow] = bpm.main_compute(dn, n2=n2, kerr_loop=2, disp_progress=False) x_pos = int(length_x/2/dist_x) z_disp = np.linspace(0, length_z/1000, nbr_z_disp+1) plt.figure("Benchmark kerr") plt.title(r"Central irradition for a theorical $P_c$ = %.2e W" % P_c) plt.xlabel("z (µm)") plt.ylabel(r"I (a.u)") # plt.ylim(-0.05, 2) plt.plot(z_disp*1e3, progress_pow[:, x_pos]/progress_pow[0, x_pos], label="Power=%.2e" % power) plt.legend() plt.show() # plt.savefig("kerr_irrad.png", bbox="tight", dpi=250) # x_beg = np.array([None]*nbr_z) # x_end = np.array([None]*nbr_z) # P = np.zeros(nbr_z_disp+1) # x_beg, x_end = bpm.guide_position(peaks, 0, p) # P = bpm.power_guide(x_beg, x_end) # plt.figure("Benchmark kerr2") # plt.title("Power for a theorical critical power = %.2e" % P_c) # plt.xlabel("z (µm)") # plt.ylabel(r"Power (a.u)") # plt.ylim(-0.05, 2) # plt.plot(z_disp, P, label="Power=%.2e" % power) # plt.legend() # plt.show() # xv, zv = np.meshgrid(x, z_disp) # plt.figure("check borders") # plt.title("check if beam don't reach the borders") # plt.pcolormesh(xv, zv, progress_pow, cmap='gray') # plt.show() plt.figure("Benchmark beam profil") plt.title("Beam profil at z=%.0f µm" % length_z) plt.xlabel("x (µm)") plt.ylabel(r"I/$I_0$") plt.xlim(-30, 30) plt.plot(x, progress_pow[-1]/np.max(progress_pow[0]), label="Power=%.2e" % power) plt.legend() plt.show()
def multimodal_splitter(): """Multimodal splitter 1x2. A single mode beam is split into two single mode waveguide by the use of an intermediate multimodal waveguide.""" width1 = 3 length1 = 100 p1 = 4*width1 width2 = 100 length2 = 5110 p2 = 4*width2 width3 = width1 length3 = 4090 p3 = 2*26 p = [p1, p2, p3] nbr_p = [1, 1, 2] no = 1.453 wavelength = 1.55 delta_no = 0.01 length_z = length1+length2+length3 dist_z = 1 nbr_z_disp = 200 dist_x = 0.1 length_x = 1300 bpm = Bpm(no, wavelength, length_z, dist_z, nbr_z_disp, length_x, dist_x) [length_z, nbr_z, nbr_z_disp, length_x, nbr_x, x] = bpm.create_x_z() shape1 = bpm.gauss_guide(width1, 4) [peaks, dn] = bpm.create_guides(shape1, delta_no, 1, p1, z=[0, length1]) shape2 = bpm.squared_guide(width2) [peaks2, dn2] = bpm.create_guides( shape2, delta_no, 1, p2, z=[length1, length1+length2]) shape3 = bpm.gauss_guide(width3, 4) [peaks3, dn3] = bpm.create_guides( shape3, delta_no, 2, p3, z=[length1+length2, length1+length2+length3]) dn = np.add(dn, dn2) dn = np.add(dn, dn3) peaks = np.append(peaks, peaks2, 0) peaks = np.append(peaks, peaks3, 0) z_disp = np.linspace(0, length_z/1000, nbr_z_disp+1) xv, zv = np.meshgrid(x, z_disp) dn_disp = np.linspace(0, nbr_z-1, nbr_z_disp+1, dtype=int) plt.figure("Multimodal beam splitter 1x2") plt.title("Multimodal beam splitter 1x2") plt.xlabel("x (µm)") plt.ylabel("z (mm)") plt.pcolormesh(xv, zv, dn[dn_disp], cmap='gray') plt.show() # plt.savefig("splitter_shape.png", bbox="tight", dpi=250) assert bpm.check_modes(width1, delta_no) == 0 field = bpm.all_modes(width1, delta_no)[0] [progress_pow] = bpm.init_field(field, 0, 1) [progress_pow] = bpm.main_compute(dn) plt.figure("beam profil at the end") ax1 = plt.subplot(111) plt.title("Beam profil at z=%.0f µm" % length_z) plt.xlabel("x (µm)") plt.xlim(-p3, p3) ax1.set_ylabel(r'$\Delta_n$') ax2 = ax1.twinx() ax2.set_ylabel(r"I (a.u)") ax1.plot(x, dn[-1]) verts = [(x[0], 0), *zip(x, dn[-2, :].real), (x[-1], 0)] poly = Polygon(verts, facecolor='0.9', edgecolor='0.5') ax1.set_ylim(0, max(dn[0, :].real)*1.1 + 1E-20) ax1.add_patch(poly) ax2.plot(x, progress_pow[-1]/np.max(progress_pow[0])) ax2.set_ylim(0, 1.1) plt.show() # plt.savefig("splitter_beam_end.png", bbox="tight", dpi=250) plt.figure("Propagation in the multimodal beam splitter 1x2") plt.title("Beam propagation in the beam splitter 1x2") plt.xlabel("x (µm)") plt.ylabel("z (mm)") plt.pcolormesh(xv, zv, progress_pow) plt.show() # plt.savefig("splitter_propagation.png", bbox="tight", dpi=250) plt.figure("Power in waveguides") ax1 = plt.subplot(111) ax1.set_title("Power in waveguides") ax1.set_ylim(-0.05, 1.05) ax1.set_xlabel('z (mm)') ax1.set_ylabel('Power (a.u)') x_beg = np.array([[None]*nbr_z]*peaks.shape[0]) x_end = np.array([[None]*nbr_z]*peaks.shape[0]) P = np.zeros((peaks.shape[0], nbr_z_disp+1)) num_gd = 0 for i, n in enumerate(nbr_p): for _ in range(n): [x_beg[num_gd, :], x_end[num_gd, :]] = bpm.guide_position(peaks, num_gd, p[i]) num_gd += 1 if n == 0: # needed if no waveguide num_gd += 1 for i in range(peaks.shape[0]): P[i, :] = bpm.power_guide(x_beg[i, :], x_end[i, :]) ax1.plot(z_disp, P[i, :], label='P'+str(i)) plt.legend() plt.show() # plt.savefig("splitter_power.png", bbox="tight", dpi=250) print("Input power = %.2f \nOutput powers = %.2f and %.2f" % (P[0, 0], P[2, -1], P[3, -1])) print("Losses = %.2f" % (P[0, 0]-P[2, -1]-P[3, -1]))
def free_propag(dist_x=0.1, length_x=1000, length_z=10000, no=1, lo=1): """Show the free propagation of a beam and compare Beampy results with the theorical values. Parameters ---------- dist_x : float Step over x (µm). length_x : float Size of the compute window over x (µm). length_z : float Size of the compute window over z (µm). no : float Refractive index of the cladding lo : float Wavelength of the beam in vaccum (µm). """ dist_z = length_z nbr_z_disp = 1 bpm = Bpm(no, lo, length_z, dist_z, nbr_z_disp, length_x, dist_x) [length_z, nbr_z, nbr_z_disp, length_x, nbr_x, x] = bpm.create_x_z() dn = np.zeros((nbr_z, nbr_x)) fwhm = 20 field = bpm.gauss_light(fwhm) irrad = 1E13 theta_ext = 0 [progress_pow] = bpm.init_field(field, theta_ext, irrad) [progress_pow] = bpm.main_compute(dn) intensity = progress_pow[-1] index = np.where(intensity >= (np.max(intensity)/2))[0][0] fwhm_final = abs(2 * x[index]) w0_final = fwhm_final / np.sqrt(2 * np.log(2)) print("Beampy: width w = %f µm" % w0_final) w0 = fwhm / np.sqrt(2 * np.log(2)) z0 = np.pi * no * w0**2 / lo w = w0 * np.sqrt(1 + (length_z / z0)**2) print("Theory: width w = %f µm" % w) diff = abs(w - w0_final)/w*100 print("Relative difference: %f" % diff, "%") if diff > 1: print("Check the dist_x or length_x parameters") irrad_theo = irrad*w0/w # in 2D: irrad*(w0/w)**2 print("Beampy: irradiance I =", np.max(intensity)) print("Theory: irradiance I =", irrad_theo) diff = abs(np.max(intensity) - irrad_theo)/irrad_theo*100 print("Relative difference: %f" % diff, "%") if diff > 1: print("Check the dist_x or length_x parameters") fwhm_theo = w * np.sqrt(2 * np.log(2)) profil_theo = bpm.gauss_light(fwhm_theo) intensity_theo = irrad_theo * abs2(profil_theo) plt.figure() plt.title("Beam profil after %.0f mm of free propagation" % (length_z/1e3)) plt.xlabel("x (µm)") plt.ylabel(r"irradiance (W.m$^{-2}$)") plt.plot(x, intensity_theo, "-", label="Theory") plt.plot(x, intensity, "--", label="Beampy") plt.legend() plt.show()