コード例 #1
0
    def _test_sample(self, n_jobs, test_folder):
        logger.info('Running on %i cores...' % n_jobs)

        n = 4

        mu1 = num.ones(n) * (1. / 2)
        mu2 = -mu1

        stdev = 0.1
        sigma = num.power(stdev, 2) * num.eye(n)
        isigma = num.linalg.inv(sigma)
        dsigma = num.linalg.det(sigma)

        w1 = stdev
        w2 = (1 - stdev)

        def last_sample(x):
            return x[(self.n_steps - 1)::self.n_steps]

        def two_gaussians(x):
            log_like1 = - 0.5 * n * tt.log(2 * num.pi) \
                        - 0.5 * tt.log(dsigma) \
                        - 0.5 * (x - mu1).T.dot(isigma).dot(x - mu1)
            log_like2 = - 0.5 * n * tt.log(2 * num.pi) \
                        - 0.5 * tt.log(dsigma) \
                        - 0.5 * (x - mu2).T.dot(isigma).dot(x - mu2)
            return tt.log(w1 * tt.exp(log_like1) + w2 * tt.exp(log_like2))

        with pm.Model() as SMC_test:
            X = pm.Uniform('X',
                           shape=n,
                           lower=-2. * num.ones_like(mu1),
                           upper=2. * num.ones_like(mu1),
                           testval=-1. * num.ones_like(mu1),
                           transform=None)
            like = pm.Deterministic('like', two_gaussians(X))
            llk = pm.Potential('like', like)

        with SMC_test:
            step = smc.SMC(n_chains=self.n_chains,
                           tune_interval=self.tune_interval,
                           likelihood_name=SMC_test.deterministics[0].name)

        smc.smc_sample(n_steps=self.n_steps,
                       step=step,
                       n_jobs=n_jobs,
                       progressbar=True,
                       stage=0,
                       homepath=test_folder,
                       model=SMC_test,
                       rm_flag=False)

        stage_handler = backend.TextStage(test_folder)

        mtrace = stage_handler.load_multitrace(-1, model=SMC_test)

        d = mtrace.get_values('X', combine=True, squeeze=True)
        x = last_sample(d)
        mu1d = num.abs(x).mean(axis=0)

        num.testing.assert_allclose(mu1, mu1d, rtol=0., atol=0.03)
コード例 #2
0
ファイル: smc.py プロジェクト: shineusn/beat
def smc_sample(
        n_steps, step=None, start=None, homepath=None, chain=0,
        stage=0, n_jobs=1, tune=None, progressbar=False, buffer_size=5000,
        model=None, update=None, random_seed=None, rm_flag=False):
    """
    Sequential Monte Carlo samlping

    Samples the solution space with n_chains of Metropolis chains, where each
    chain has n_steps iterations. Once finished, the sampled traces are
    evaluated:

    (1) Based on the likelihoods of the final samples, chains are weighted
    (2) the weighted covariance of the ensemble is calculated and set as new
        proposal distribution
    (3) the variation in the ensemble is calculated and the next tempering
        parameter (beta) calculated
    (4) New n_chains Metropolis chains are seeded on the traces with high
        weight for n_steps iterations
    (5) Repeat until beta > 1.

    Parameters
    ----------
    n_steps : int
        The number of samples to draw for each Markov-chain per stage
    step : :class:`SMC`
        SMC initialisation object
    start : List of dictionaries
        with length of (n_chains)
        Starting points in parameter space (or partial point)
        Defaults to random draws from variables (defaults to empty dict)
    chain : int
        Chain number used to store sample in backend. If `n_jobs` is
        greater than one, chain numbers will start here.
    stage : int
        Stage where to start or continue the calculation. It is possible to
        continue after completed stages (stage should be the number of the
        completed stage + 1). If None the start will be at stage = 0.
    n_jobs : int
        The number of cores to be used in parallel. Be aware that theano has
        internal parallelisation. Sometimes this is more efficient especially
        for simple models.
        step.n_chains / n_jobs has to be an integer number!
    tune : int
        Number of iterations to tune, if applicable (defaults to None)
    homepath : string
        Result_folder for storing stages, will be created if not existing.
    progressbar : bool
        Flag for displaying a progress bar
    buffer_size : int
        this is the number of samples after which the buffer is written to disk
        or if the chain end is reached
    model : :class:`pymc3.Model`
        (optional if in `with` context) has to contain deterministic
        variable name defined under step.likelihood_name' that contains the
        model likelihood
    update : :py:class:`models.Problem`
        Problem object that contains all the observed data and (if applicable)
        covariances to be updated each transition step.
    rm_flag : bool
        If True existing stage result folders are being deleted prior to
        sampling.

    References
    ----------
    .. [Minson2013] Minson, S. E. and Simons, M. and Beck, J. L., (2013),
        Bayesian inversion for finite fault earthquake source models
        I- Theory and algorithm. Geophysical Journal International, 2013,
        194(3), pp.1701-1726,
        `link <https://gji.oxfordjournals.org/content/194/3/1701.full>`__
    """

    model = modelcontext(model)
    step.n_steps = int(n_steps)

    if n_steps < 1:
        raise TypeError('Argument `n_steps` should be above 0.', exc_info=1)

    if step is None:
        raise TypeError('Argument `step` has to be a SMC step object.')

    if homepath is None:
        raise TypeError(
            'Argument `homepath` should be path to result_directory.')

    if n_jobs > 1:
        if not (step.n_chains / float(n_jobs)).is_integer():
            raise ValueError('n_chains / n_jobs has to be a whole number!')

    if start is not None:
        if len(start) != step.n_chains:
            raise TypeError('Argument `start` should have dicts equal the '
                            'number of chains (step.N-chains)')
        else:
            step.population = start

    if not any(
            step.likelihood_name in var.name for var in model.deterministics):
            raise TypeError('Model (deterministic) variables need to contain '
                            'a variable %s '
                            'as defined in `step`.' % step.likelihood_name)

    stage_handler = backend.TextStage(homepath)

    chains, step, update = init_stage(
        stage_handler=stage_handler,
        step=step,
        stage=stage,
        progressbar=progressbar,
        update=update,
        model=model,
        rm_flag=rm_flag)

    with model:
        while step.beta < 1.:
            if step.stage == 0:
                # Initial stage
                logger.info('Sample initial stage: ...')
                draws = 1
            else:
                draws = n_steps

            logger.info('Beta: %f Stage: %i' % (step.beta, step.stage))

            # Metropolis sampling intermediate stages
            chains = stage_handler.clean_directory(step.stage, chains, rm_flag)

            sample_args = {
                'draws': draws,
                'step': step,
                'stage_path': stage_handler.stage_path(step.stage),
                'progressbar': progressbar,
                'model': model,
                'n_jobs': n_jobs,
                'chains': chains,
                'buffer_size': buffer_size}

            mtrace = iter_parallel_chains(**sample_args)

            step.population, step.array_population, step.likelihoods = \
                step.select_end_points(mtrace)

            if update is not None:
                logger.info('Updating Covariances ...')
                mean_pt = step.mean_end_points()
                update.update_weights(mean_pt, n_jobs=n_jobs)
                mtrace = update_last_samples(
                    homepath, step, progressbar, model, n_jobs, rm_flag)
                step.population, step.array_population, step.likelihoods = \
                    step.select_end_points(mtrace)

            step.beta, step.old_beta, step.weights = step.calc_beta()

            if step.beta > 1.:
                logger.info('Beta > 1.: %f' % step.beta)
                step.beta = 1.
                outparam_list = [step.get_sampler_state(), update]
                stage_handler.dump_atmip_params(step.stage, outparam_list)
                if stage == -1:
                    chains = []
                else:
                    chains = None
            else:
                step.covariance = step.calc_covariance()
                step.proposal_dist = choose_proposal(
                    step.proposal_name, scale=step.covariance)
                step.resampling_indexes = step.resample()
                step.chain_previous_lpoint = \
                    step.get_chain_previous_lpoint(mtrace)

                outparam_list = [step.get_sampler_state(), update]
                stage_handler.dump_atmip_params(step.stage, outparam_list)

                step.stage += 1
                del(mtrace)

        # Metropolis sampling final stage
        logger.info('Sample final stage')
        step.stage = -1

        temp = np.exp((1 - step.old_beta) *
                      (step.likelihoods - step.likelihoods.max()))
        step.weights = temp / np.sum(temp)
        step.covariance = step.calc_covariance()
        step.proposal_dist = choose_proposal(
            step.proposal_name, scale=step.covariance)

        step.resampling_indexes = step.resample()
        step.chain_previous_lpoint = step.get_chain_previous_lpoint(mtrace)

        sample_args['step'] = step
        sample_args['stage_path'] = stage_handler.stage_path(step.stage)
        sample_args['chains'] = chains
        iter_parallel_chains(**sample_args)

        outparam_list = [step.get_sampler_state(), update]
        stage_handler.dump_atmip_params(step.stage, outparam_list)
        logger.info('Finished sampling!')
コード例 #3
0
def metropolis_sample(n_steps=10000,
                      homepath=None,
                      start=None,
                      progressbar=False,
                      rm_flag=False,
                      buffer_size=5000,
                      step=None,
                      model=None,
                      n_jobs=1,
                      update=None,
                      burn=0.5,
                      thin=2):
    """
    Execute Metropolis algorithm repeatedly depending on the number of chains.
    """

    # hardcoded stage here as there are no stages
    stage = 1
    model = modelcontext(model)
    step.n_steps = int(n_steps)

    if n_steps < 1:
        raise TypeError('Argument `n_steps` should be above 0.', exc_info=1)

    if step is None:
        raise TypeError('Argument `step` has to be a Metropolis step object.')

    if homepath is None:
        raise TypeError(
            'Argument `homepath` should be path to result_directory.')

    if n_jobs > 1:
        if not (step.n_chains / float(n_jobs)).is_integer():
            raise Exception('n_chains / n_jobs has to be a whole number!')

    if start is not None:
        if len(start) != step.n_chains:
            raise Exception('Argument `start` should have dicts equal the '
                            'number of chains (step.N-chains)')
        else:
            step.population = start

    if not any(step.likelihood_name in var.name
               for var in model.deterministics):
        raise Exception('Model (deterministic) variables need to contain '
                        'a variable %s '
                        'as defined in `step`.' % step.likelihood_name)

    stage_handler = backend.TextStage(homepath)

    util.ensuredir(homepath)

    chains, step, update = init_stage(
        stage_handler=stage_handler,
        step=step,
        stage=stage - 1,  # needs zero otherwise tries to load stage_0 results
        progressbar=progressbar,
        update=update,
        model=model,
        rm_flag=rm_flag)

    with model:

        chains = stage_handler.clean_directory(step.stage, chains, rm_flag)

        logger.info('Sampling stage ...')

        draws = n_steps

        step.stage = stage

        sample_args = {
            'draws': draws,
            'step': step,
            'stage_path': stage_handler.stage_path(step.stage),
            'progressbar': progressbar,
            'model': model,
            'n_jobs': n_jobs,
            'buffer_size': buffer_size,
            'chains': chains
        }

        mtrace = iter_parallel_chains(**sample_args)

        if step.proposal_name == 'MultivariateNormal':
            pdict, step.covariance = get_trace_stats(mtrace, step, burn, thin)

            step.proposal_dist = choose_proposal(step.proposal_name,
                                                 scale=step.covariance)

        if update is not None:
            logger.info('Updating Covariances ...')
            update.update_weights(pdict['dist_mean'], n_jobs=n_jobs)

            mtrace = update_last_samples(homepath, step, progressbar, model,
                                         n_jobs, rm_flag)

        elif update is not None and stage == 0:
            update.engine.close_cashed_stores()

        step.chain_previous_lpoint = step.get_chain_previous_lpoint(mtrace)

        outparam_list = [step.get_sampler_state(), update]
        stage_handler.dump_atmip_params(step.stage, outparam_list)

        # get_final_stage(homepath, n_stages, model=model)
        return stage_handler.load_multitrace(step.stage, model=model)