def test_t16(const): def odefun(y, _, k): return 1 * y[1], 1 * (-y[0] * np.pi**2 / (4 * k[0])), 1 def odejac(_, __, k): df_dy = np.array([[0, 1, 0], [-np.pi**2 / (4 * k[0]), 0, 0], [0, 0, 0]]) df_dp = np.empty((3, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, k): return y0[0], yf[0] - np.sin(np.pi / (2 * np.sqrt(k[0]))), y0[2] algo = SPBVP(odefun, None, bcfun) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[0, 0, 0], [0, 0, 1]]) solinit.k = np.array([const]) sol = algo.solve(solinit)['traj'] e1 = np.sin(np.pi * sol.y[:, 2] / (2 * np.sqrt(sol.k[0]))) e2 = (np.pi * np.cos((np.pi * sol.y[:, 2]) / (2 * np.sqrt(sol.k[0])))) / (2 * np.sqrt(sol.k[0])) assert all(e1 - sol.y[:, 0] < tol) assert all(e2 - sol.y[:, 1] < tol)
def test_t31(const): def odefun(y, _, k): return np.sin(y[1]), y[2], -y[3] / k[0], \ ((y[0]-1) * np.cos(y[1]) - y[2] / np.cos(y[1]) - k[0] * y[3] * np.tan(y[1])) / k[0] def odejac(y, _, k): df_dy = np.array([[0, np.cos(y[1]), 0, 0], [0, 0, 1, 0], [0, 0, 0, -1 / k[0]], [ np.cos(y[1]) / k[0], -(np.sin(y[1]) * (y[0] - 1) + k[0] * y[3] * (np.tan(y[1])**2 + 1) + (y[2] * np.sin(y[1])) / np.cos(y[1])**2) / k[0], -1 / (k[0] * np.cos(y[1])), -np.tan(y[1]) ]]) df_dp = np.empty((4, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, ___): return y0[0], y0[2], yf[0], yf[2] algo = SPBVP(odefun, None, bcfun) algo.set_derivative_jacobian(odejac) sol = Trajectory() sol.t = np.linspace(0, 1, 2) sol.y = np.array([[0, 0, 0, 0], [0, 0, 0, 0]]) sol.k = np.array([const]) sol = algo.solve(sol)['traj'] assert sol.converged
def test_t10(const): def odefun(y, _, k): return 2 * y[1], 2 * (-y[2] * y[1] / k[0]), 2 def odejac(y, _, k): df_dy = np.array([[0, 2, 0], [0, 2 * (-y[2]) / k[0], 2 * (-y[1] / k[0])], [0, 0, 0]]) df_dp = np.empty((3, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, ___): return y0[0], yf[0] - 2, y0[2] + 1 algo = SPBVP(odefun, None, bcfun) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[0, 0, -1], [2, 0, 1]]) solinit.k = np.array([const]) sol = algo.solve(solinit)['traj'] e1 = 1 + erf(sol.y[:, 2] / np.sqrt(2 * sol.k[0])) / erf( 1 / np.sqrt(2 * sol.k[0])) e2 = np.sqrt(2) / (np.sqrt(np.pi) * np.sqrt(sol.k[0]) * np.exp( sol.y[:, 2]**2 / (2 * sol.k[0])) * erf(np.sqrt(2) / (2 * np.sqrt(sol.k[0])))) assert all(e1 - sol.y[:, 0] < tol) assert all(e2 - sol.y[:, 1] < tol)
def test_t9(const): def odefun(y, _, k): return 2 * y[1], 2 * (-(4 * y[2] * y[1] + 2 * y[0]) / (k[0] + y[2]**2)), 2 def odejac(y, _, k): df_dy = np.array( [[0, 2, 0], [ -4 / (y[2]**2 + k[0]), -(8 * y[2]) / (y[2]**2 + k[0]), (4 * y[2] * (2 * y[0] + 4 * y[1] * y[2])) / (y[2]**2 + k[0])**2 - (8 * y[1]) / (y[2]**2 + k[0]) ], [0, 0, 0]]) df_dp = np.empty((3, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, k): return y0[0] - 1 / (1 + k[0]), yf[0] - 1 / (1 + k[0]), y0[2] + 1 algo = SPBVP(odefun, None, bcfun) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[1 / (1 + const), 0, -1], [1 / (1 + const), 1, 1]]) solinit.k = np.array([const]) sol = algo.solve(solinit)['traj'] e1 = 1 / (sol.k[0] + sol.y[:, 2]**2) e2 = -(2 * sol.y[:, 2]) / (sol.y[:, 2]**2 + sol.k[0])**2 assert all(e1 - sol.y[:, 0] < tol) assert all(e2 - sol.y[:, 1] < tol)
def test_t13(const): def odefun(y, _, k): return 2 * y[1], 2 * ((y[0] - k[0] * np.pi**2 * np.cos(np.pi * y[2]) - np.cos(np.pi * y[2])) / k[0]), 2 def odejac(y, _, k): df_dy = np.array([[0, 2, 0], [ 2 / k[0], 0, (2 * (np.pi * np.sin(np.pi * y[2]) + k[0] * np.pi**3 * np.sin(np.pi * y[2]))) / k[0] ], [0, 0, 0]]) df_dp = np.empty((3, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, ___): return y0[0], yf[0] + 1, y0[2] + 1 algo = SPBVP(odefun, None, bcfun) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[-1, 0, -1], [0, 0, 1]]) solinit.k = np.array([const]) sol = algo.solve(solinit)['traj'] e1 = np.cos(np.pi * sol.y[:, 2]) + np.exp( -(1 + sol.y[:, 2]) / np.sqrt(sol.k[0])) e2 = -np.exp(-(sol.y[:, 2] + 1) / np.sqrt(sol.k[0])) / np.sqrt( sol.k[0]) - np.pi * np.sin(np.pi * sol.y[:, 2]) assert all(e1 - sol.y[:, 0] < tol) assert all(e2 - sol.y[:, 1] < tol)
def test_t8(const): def odefun(y, _, k): return y[1], (-y[1] / k[0]), 1 def odejac(_, __, k): df_dy = np.array([[0, 1, 0], [0, -1 / k[0], 0], [0, 0, 0]]) df_dp = np.empty((3, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, ___): return y0[0] - 1, yf[0] - 2, y0[2] algo = SPBVP(odefun, None, bcfun) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[1, 0, -1], [2, 0, 1]]) solinit.k = np.array([const]) sol = algo.solve(solinit)['traj'] e1 = (2 - np.exp(-1 / sol.k[0]) - np.exp(-sol.y[:, 2] / sol.k[0])) / (1 - np.exp(-1 / sol.k[0])) e2 = -1 / (sol.k[0] * np.exp(sol.y[:, 2] / sol.k[0]) * (1 / np.exp(1 / sol.k[0]) - 1)) assert all(e1 - sol.y[:, 0] < tol) assert all(e2 - sol.y[:, 1] < tol)
def test_t17(const): def odefun(y, _, k): return 0.2 * y[1], 0.2 * (-3 * k[0] * y[0] / (k[0] + y[2]**2)**2), 0.2 def odejac(y, _, k): df_dy = np.array([[0, 0.2, 0], [ -(3 * k[0]) / (5 * (y[2]**2 + k[0])**2), 0, (12 * k[0] * y[0] * y[2]) / (5 * (y[2]**2 + k[0])**3) ], [0, 0, 0]]) df_dp = np.empty((3, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, k): return y0[0] + 0.1 / np.sqrt(k[0] + 0.01), yf[0] - 0.1 / np.sqrt( k[0] + 0.01), y0[2] + 0.1 algo = SPBVP(odefun, None, bcfun) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[0, 0, 0], [0, 0, 1]]) solinit.k = np.array([const]) sol = algo.solve(solinit)['traj'] e1 = sol.y[:, 2] / np.sqrt(sol.k[0] + sol.y[:, 2]**2) e2 = 1 / np.sqrt(sol.y[:, 2]**2 + sol.k[0]) - sol.y[:, 2]**2 / ( sol.y[:, 2]**2 + sol.k[0])**(3 / 2) assert all(e1 - sol.y[:, 0] < tol) assert all(e2 - sol.y[:, 1] < tol)
def test_t33(const): def odefun(y, _, k): return y[1], (y[0] * y[3] - y[2] * y[1]) / k[0], y[3], y[4], y[5], ( -y[2] * y[5] - y[0] * y[1]) / k[0] def odejac(y, _, k): df_dy = np.array( [[0, 1, 0, 0, 0, 0], [y[3] / k[0], -y[2] / k[0], -y[1] / k[0], y[0] / k[0], 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1], [-y[1] / k[0], -y[0] / k[0], -y[5] / k[0], 0, 0, -y[2] / k[0]]]) df_dp = np.empty((6, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, ___): return y0[0] + 1, y0[2], y0[3], yf[0] - 1, yf[2], yf[3] algo = SPBVP(odefun, None, bcfun) algo.set_derivative_jacobian(odejac) sol = Trajectory() sol.t = np.linspace(0, 1, 2) sol.y = np.array([[-1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0]]) sol.k = np.array([const]) sol = algo.solve(sol)['traj'] assert sol.converged
def test_t30(const): def odefun(y, _, k): return y[1], (y[0] - y[0] * y[1]) / k[0] def odejac(y, _, k): df_dy = np.array([[0, 1], [(1 - y[1]) / k[0], -y[0] / k[0]]]) df_dp = np.empty((2, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, ___): return y0[0] + 7 / 6, yf[0] - 3 / 2 algo = SPBVP(odefun, None, bcfun) algo.set_derivative_jacobian(odejac) sol = Trajectory() sol.t = np.linspace(0, 1, 2) sol.y = np.array([[-7 / 6, 0], [3 / 2, 0]]) sol.k = np.array([const]) cc = np.linspace(const * 10, const, 10) for c in cc: sol = copy.deepcopy(sol) sol.k = np.array([c]) sol = algo.solve(sol)['traj'] assert sol.converged
def test_t21(const): def odefun(y, _, k): return y[1], (y[0] * (1 + y[0]) - np.exp(-2 * y[2] / np.sqrt(k[0]))) / k[0], 1 def odejac(y, _, k): df_dy = np.array([[0, 1, 0], [(2 * y[0] + 1) / k[0], 0, (2 * np.exp(-(2 * y[2]) / np.sqrt(k[0]))) / k[0]**(3 / 2)], [0, 0, 0]]) df_dp = np.empty((3, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, k): return y0[0] - 1, yf[0] - np.exp(-1 / np.sqrt(k[0])), y0[2] algo = SPBVP(odefun, None, bcfun) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[0, 0, 0], [0, 0, 1]]) solinit.k = np.array([const]) sol = algo.solve(solinit)['traj'] e1 = np.exp(-sol.y[:, 2] / np.sqrt(const)) e2 = -np.exp(-sol.y[:, 2] / np.sqrt(const)) / np.sqrt(const) assert all(e1 - sol.y[:, 0] < tol) assert all(e2 - sol.y[:, 1] < tol)
def test_t19(const): def odefun(y, _, k): return y[1], (-y[1] / k[0]), 1 def odejac(_, __, k): df_dy = np.array([[0, 1, 0], [0, -1 / k[0], 0], [0, 0, 0]]) df_dp = np.empty((3, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, ___): return y0[0], yf[0], y0[2] algo = SPBVP(odefun, None, bcfun) algo.set_derivative_jacobian(odejac) sol = Trajectory() sol.t = np.linspace(0, 1, 2) sol.y = np.array([[0, 0, 0], [0, 0, 1]]) sol.k = np.array([const]) cc = np.linspace(const * 100, const, 10) for c in cc: sol = copy.deepcopy(sol) sol.k = np.array([c]) sol = algo.solve(sol)['traj'] assert sol.converged
def test_t2(const): def odefun(y, _, k): return y[1], y[1] / k[0] def odejac(_, __, k): df_dy = np.array([[0, 1], [0, 1 / k[0]]]) df_dp = np.empty((2, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, ___): return y0[0] - 1, yf[0] algo = SPBVP(odefun, None, bcfun) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[0, 1], [0, 1]]) solinit.k = np.array([const]) sol = algo.solve(solinit)['traj'] e1 = (1.e0 - np.exp( (sol.t - 1.e0) / sol.k)) / (1.e0 - np.exp(-1.e0 / sol.k)) e2 = np.exp((sol.t - 1) / sol.k) / (sol.k * (1 / np.exp(1 / sol.k) - 1)) assert all(e1 - sol.y[:, 0] < tol) assert all(e2 - sol.y[:, 1] < tol)
def test_t4(const): def odefun(y, _, k): return 2 * y[1], 2 * (((1 + k[0]) * y[0] - y[1]) / k[0]), 2 def odejac(_, __, k): df_dy = np.array([[0, 2, 0], [2 * (1 + k[0]) / k[0], 2 * (-1) / k[0], 0], [0, 0, 0]]) df_dp = np.empty((3, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, k): return y0[0] - 1 - np.exp(-2), yf[0] - 1 - np.exp( -2 * (1 + k[0]) / k[0]), y0[2] + 1 algo = SPBVP(odefun, None, bcfun) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[-1, 0, -1], [-1, 0, 1]]) solinit.k = np.array([const]) sol = algo.solve(solinit)['traj'] e1 = np.exp(sol.y[:, 2] - 1) + np.exp(-((1 + sol.k[0]) * (1 + sol.y[:, 2]) / sol.k[0])) e2 = np.exp(sol.y[:, 2] - 1) - (sol.k[0] + 1) / (sol.k[0] * np.exp( (sol.y[:, 2] + 1) * (sol.k[0] + 1) / sol.k[0])) assert all(e1 - sol.y[:, 0] < tol) assert all(e2 - sol.y[:, 1] < tol)
def test_t24(const): def odefun(x, _, k): a_mat_x = 1 + x[2]**2 a_mat_xp = 2 * x[2] y = 1.4 return (x[1], (((1 + y) / 2 - k[0] * a_mat_xp) * x[0] * x[1] - x[1] / x[0] - (a_mat_xp / a_mat_x) * (1 - (y - 1) / 2 * x[0]**2)) / (k[0] * a_mat_x * x[0]), 1) def odejac(x, _, k): y = 1.4 df_dy = np.array( [[0, 1, 0], [(x[1] * (y / 2 - 2 * k * x[2] + 1 / 2) + x[1] / x[0]**2 + (4 * x[0] * x[2] * (y / 2 - 1 / 2)) / (x[2]**2 + 1)) / (k[0] * x[0] * (x[2]**2 + 1)) - ((2 * x[2] * ((y / 2 - 1 / 2) * x[0]**2 - 1)) / (x[2]**2 + 1) - x[1] / x[0] + x[0] * x[1] * (y / 2 - 2 * k[0] * x[2] + 1 / 2)) / (k[0] * x[0]**2 * (x[2]**2 + 1)), (x[0] * (y / 2 - 2 * k[0] * x[2] + 1 / 2) - 1 / x[0]) / (k[0] * x[0] * (x[2]**2 + 1)), -((4 * x[2]**2 * ((y / 2 - 1 / 2) * x[0]**2 - 1)) / (x[2]**2 + 1)**2 - (2 * ((y / 2 - 1 / 2) * x[0]**2 - 1)) / (x[2]**2 + 1) + 2 * k[0] * x[0] * x[1]) / (k[0] * x[0] * (x[2]**2 + 1)) - (2 * x[2] * ((2 * x[2] * ((y / 2 - 1 / 2) * x[0]**2 - 1)) / (x[2]**2 + 1) - x[1] / x[0] + x[0] * x[1] * (y / 2 - 2 * k[0] * x[2] + 1 / 2))) / (k[0] * x[0] * (x[2]**2 + 1)**2)], [0, 0, 0]]) df_dp = np.empty((3, 0)) return df_dy, df_dp def bcfun(x0, xf, _, __, ___): return x0[0] - 0.9129, xf[0] - 0.375, x0[2] algo = SPBVP(odefun, None, bcfun) algo.set_derivative_jacobian(odejac) sol = Trajectory() sol.t = np.linspace(0, 1, 2) sol.y = np.array([[1, 1, 0], [0.1, 0.1, 1]]) sol.k = np.array([const]) cc = np.linspace(const * 10, const, 10) for c in cc: sol = copy.deepcopy(sol) sol.k = np.array([c]) sol = algo.solve(sol)['traj'] assert sol.converged
def test_t7(const): def odefun(y, _, k): return 2 * y[1], 2 * ( (-y[2] * y[1] + y[0] - (1.0e0 + k[0] * np.pi**2) * np.cos(np.pi * y[2]) - np.pi * y[2] * np.sin(np.pi * y[2])) / k[0]), 2 def odejac(y, _, k): df_dy = np.array( [[0, 2, 0], [ 2 / k[0], -2 * y[2] / k[0], -(2 * (y[1] + np.pi * np.sin(np.pi * y[2]) + np.pi**2 * y[2] * np.cos(np.pi * y[2]) - np.pi * np.sin(np.pi * y[2]) * (k[0] * np.pi**2 + 1))) / k[0] ], [0, 0, 0]]) df_dp = np.empty((3, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, ___): return y0[0] + 1, yf[0] - 1, y0[2] + 1 algo = SPBVP(odefun, None, bcfun) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[-1, 0, -1], [1, 0, 1]]) solinit.k = np.array([const]) sol = algo.solve(solinit)['traj'] e1 = np.cos(np.pi * sol.y[:, 2]) + sol.y[:, 2] + ( sol.y[:, 2] * erf(sol.y[:, 2] / np.sqrt(2.0e0 * sol.k[0])) + np.sqrt(2 * sol.k[0] / np.pi) * np.exp(-sol.y[:, 2]**2 / (2 * sol.k[0])) ) / (erf(1.0e0 / np.sqrt(2 * sol.k[0])) + np.sqrt(2.0e0 * sol.k[0] / np.pi) * np.exp(-1 / (2 * sol.k[0]))) e2 = erf( (np.sqrt(2) * sol.y[:, 2]) / (2 * np.sqrt(sol.k[0]))) / (erf(np.sqrt(2) / (2 * np.sqrt(sol.k[0]))) + (np.sqrt(2) * np.sqrt(sol.k[0])) / (np.sqrt(np.pi) * np.exp(1 / (2 * sol.k[0]))) ) - np.pi * np.sin(np.pi * sol.y[:, 2]) + 1 assert all(e1 - sol.y[:, 0] < tol) assert all(e2 - sol.y[:, 1] < tol)
def test_t22(const): def odefun(y, _, k): return y[1], -(y[1] + y[0] * y[0]) / k[0] def odejac(y, _, k): df_dy = np.array([[0, 1], [-(2 * y[0]) / k[0], -1 / k[0]]]) df_dp = np.empty((2, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, ___): return y0[0], yf[0] - 1 / 2 algo = SPBVP(odefun, None, bcfun) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[0, 0], [0, 0]]) solinit.k = np.array([const]) sol = algo.solve(solinit)['traj'] assert sol.converged
def test_t15(const): def odefun(y, _, k): return 2 * y[1], 2 * (y[2] * y[0] / k[0]), 2 def odejac(y, _, k): df_dy = np.array([[0, 2, 0], [2 * (y[2] / k[0]), 0, 2 * (y[0] / k[0])], [0, 0, 0]]) df_dp = np.empty((3, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, ___): return y0[0] - 1, yf[0] - 1, y0[2] + 1 algo = SPBVP(odefun, None, bcfun) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[1, 0, -1], [0, 0, 1]]) solinit.k = np.array([const]) sol = algo.solve(solinit)['traj'] assert sol.converged
def test_t6(): # This is a "special" case not using the difficulty settings above. def odefun(y, _, k): return (2 * y[1], 2 * ((-y[2] * y[1] - k[0] * np.pi**2 * np.cos(np.pi * y[2]) - np.pi * y[2] * np.sin(np.pi * y[2])) / k[0]), 2) def odejac(y, _, k): df_dy = np.array( [[0, 2, 0], [ 0, -2 * y[2] / k[0], -(2 * (y[1] + np.pi * np.sin(np.pi * y[2]) - k[0] * np.pi**3 * np.sin(np.pi * y[2]) + np.pi**2 * y[2] * np.cos(np.pi * y[2]))) / k[0] ], [0, 0, 0]]) df_dp = np.empty((3, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, ___): return y0[0] + 2, yf[0], y0[2] + 1 algo = SPBVP(odefun, None, bcfun) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[-1, 0, -1], [-1, 0, 1]]) solinit.k = np.array([1]) sol = algo.solve(solinit)['traj'] e1 = np.cos(np.pi * sol.y[:, 2]) + erf( sol.y[:, 2] / np.sqrt(2 * sol.k[0])) / erf(1 / np.sqrt(2 * sol.k[0])) e2 = np.sqrt(2) / ( np.sqrt(np.pi) * np.sqrt(sol.k[0]) * np.exp(sol.y[:, 2]**2 / (2 * sol.k[0])) * erf(np.sqrt(2) / (2 * np.sqrt(sol.k[0])))) - np.pi * np.sin(np.pi * sol.y[:, 2]) assert all(e1 - sol.y[:, 0] < tol) assert all(e2 - sol.y[:, 1] < tol)
def test_t3(const): def odefun(y, _, k): return (2 * y[1], 2 * (-(2 + np.cos(np.pi * y[2])) * y[1] + y[0] - (1 + k[0] * np.pi * np.pi) * np.cos(np.pi * y[2]) - (2 + np.cos(np.pi * y[2])) * np.pi * np.sin(np.pi * y[2])) / k[0], 2) def odejac(y, _, k): df_dy = np.array( [[0, 2, 0], [ 2 / k[0], -(2 * np.cos(np.pi * y[2]) + 4) / k[0], (2 * np.pi**2 * np.sin(np.pi * y[2])**2 + 2 * np.pi * np.sin(np.pi * y[2]) * (k[0] * np.pi**2 + 1) - 2 * np.pi**2 * np.cos(np.pi * y[2]) * (np.cos(np.pi * y[2]) + 2) + 2 * y[1] * np.pi * np.sin(np.pi * y[2])) / k[0] ], [0, 0, 0]], dtype=np.float) df_dp = np.empty((3, 0)) return df_dy, df_dp def bcfun(y0, yf, _, __, ___): return y0[0] + 1, yf[0] + 1, y0[2] + 1 algo = SPBVP(odefun, None, bcfun) algo.set_derivative_jacobian(odejac) solinit = Trajectory() solinit.t = np.linspace(0, 1, 2) solinit.y = np.array([[-1, 0, -1], [-1, 0, 1]]) solinit.k = np.array([const]) sol = algo.solve(solinit)['traj'] e1 = np.cos(np.pi * sol.y[:, 2]) e2 = -np.pi * np.sin(np.pi * sol.y[:, 2]) assert all(e1 - sol.y[:, 0] < tol) assert all(e2 - sol.y[:, 1] < tol)