コード例 #1
0
def main():
    from sklearn.ensemble import RandomForestRegressor

    # Load and convert data
    X_train, X_test, y_train, y_test = bench.load_data(params)

    # Create our random forest regressor
    regr = RandomForestRegressor(criterion=params.criterion,
                                 n_estimators=params.num_trees,
                                 max_depth=params.max_depth,
                                 max_features=params.max_features,
                                 min_samples_split=params.min_samples_split,
                                 max_leaf_nodes=params.max_leaf_nodes,
                                 min_impurity_decrease=params.min_impurity_decrease,
                                 bootstrap=params.bootstrap,
                                 random_state=params.seed,
                                 n_jobs=params.n_jobs)

    fit_time, _ = bench.measure_function_time(regr.fit, X_train, y_train, params=params)

    y_pred = regr.predict(X_train)
    train_rmse = bench.rmse_score(y_pred, y_train)

    predict_time, y_pred = bench.measure_function_time(
        regr.predict, X_test, params=params)
    test_rmse = bench.rmse_score(y_pred, y_test)

    bench.print_output(library='sklearn', algorithm='decision_forest_regression',
                       stages=['training', 'prediction'], params=params,
                       functions=['df_regr.fit', 'df_regr.predict'],
                       times=[fit_time, predict_time], accuracy_type='rmse',
                       accuracies=[train_rmse, test_rmse], data=[X_train, X_test],
                       alg_instance=regr)
コード例 #2
0
def main():
    from sklearn.linear_model import ElasticNet

    # Load data
    X_train, X_test, y_train, y_test = bench.load_data(params)

    # Create our regression object
    regr = ElasticNet(fit_intercept=params.fit_intercept, l1_ratio=params.l1_ratio,
                      alpha=params.alpha, tol=params.tol,
                      max_iter=params.maxiter, copy_X=False)
    # Time fit
    fit_time, _ = bench.measure_function_time(regr.fit, X_train, y_train, params=params)

    # Time predict
    predict_time, pred_train = bench.measure_function_time(regr.predict,
                                                           X_train, params=params)

    train_rmse = bench.rmse_score(pred_train, y_train)
    pred_test = regr.predict(X_test)
    test_rmse = bench.rmse_score(pred_test, y_test)

    bench.print_output(library='sklearn', algorithm='elastic-net',
                       stages=['training', 'prediction'], params=params,
                       functions=['ElasticNet.fit', 'ElasticNet.predict'],
                       times=[fit_time, predict_time], accuracy_type='rmse',
                       accuracies=[train_rmse, test_rmse], data=[X_train, X_train],
                       alg_instance=regr)
コード例 #3
0
def main():
    from sklearn.neighbors import KNeighborsRegressor

    # Load generated data
    X_train, X_test, y_train, y_test = bench.load_data(params)
    params.n_classes = len(np.unique(y_train))

    # Create a regression object
    knn_regr = KNeighborsRegressor(n_neighbors=params.n_neighbors,
                                   weights=params.weights,
                                   algorithm=params.method,
                                   metric=params.metric,
                                   n_jobs=params.n_jobs)

    # Measure time and accuracy on fitting
    train_time, _ = bench.measure_function_time(
        knn_regr.fit, X_train, y_train, params=params)
    if params.task == 'regression':
        y_pred = knn_regr.predict(X_train)
        train_rmse = bench.rmse_score(y_train, y_pred)
        train_r2 = bench.r2_score(y_train, y_pred)

    # Measure time and accuracy on prediction
    if params.task == 'regression':
        predict_time, yp = bench.measure_function_time(knn_regr.predict, X_test,
                                                       params=params)
        test_rmse = bench.rmse_score(y_test, yp)
        test_r2 = bench.r2_score(y_test, yp)
    else:
        predict_time, _ = bench.measure_function_time(knn_regr.kneighbors, X_test,
                                                      params=params)

    if params.task == 'regression':
        bench.print_output(
            library='sklearn',
            algorithm=knn_regr._fit_method + '_knn_regr',
            stages=['training', 'prediction'],
            params=params,
            functions=['knn_regr.fit', 'knn_regr.predict'],
            times=[train_time, predict_time],
            metric_type=['rmse', 'r2_score'],
            metrics=[[train_rmse, test_rmse], [train_r2, test_r2]],
            data=[X_train, X_test],
            alg_instance=knn_regr,
        )
    else:
        bench.print_output(
            library='sklearn',
            algorithm=knn_regr._fit_method + '_knn_search',
            stages=['training', 'search'],
            params=params,
            functions=['knn_regr.fit', 'knn_regr.kneighbors'],
            times=[train_time, predict_time],
            metric_type=None,
            metrics=[],
            data=[X_train, X_test],
            alg_instance=knn_regr,
        )
コード例 #4
0
def main():
    from sklearn.svm import NuSVR

    X_train, X_test, y_train, y_test = bench.load_data(params)
    y_train = np.asfortranarray(y_train).ravel()

    if params.gamma is None:
        params.gamma = 1.0 / X_train.shape[1]

    cache_size_bytes = bench.get_optimal_cache_size(
        X_train.shape[0], max_cache=params.max_cache_size)
    params.cache_size_mb = cache_size_bytes / 1024**2
    params.n_classes = len(np.unique(y_train))

    regr = NuSVR(C=params.C,
                 nu=params.nu,
                 kernel=params.kernel,
                 cache_size=params.cache_size_mb,
                 tol=params.tol,
                 gamma=params.gamma,
                 degree=params.degree)

    fit_time, _ = bench.measure_function_time(regr.fit,
                                              X_train,
                                              y_train,
                                              params=params)
    params.sv_len = regr.support_.shape[0]

    predict_train_time, y_pred = bench.measure_function_time(regr.predict,
                                                             X_train,
                                                             params=params)
    train_rmse = bench.rmse_score(y_train, y_pred)
    train_r2 = bench.r2_score(y_train, y_pred)

    _, y_pred = bench.measure_function_time(regr.predict,
                                            X_test,
                                            params=params)
    test_rmse = bench.rmse_score(y_test, y_pred)
    test_r2 = bench.r2_score(y_test, y_pred)

    bench.print_output(
        library='sklearn',
        algorithm='nuSVR',
        stages=['training', 'prediction'],
        params=params,
        functions=['NuSVR.fit', 'NuSVR.predict'],
        times=[fit_time, predict_train_time],
        metric_type=['rmse', 'r2_score', 'n_sv'],
        metrics=[
            [train_rmse, test_rmse],
            [train_r2, test_r2],
            [int(regr.n_support_.sum()),
             int(regr.n_support_.sum())],
        ],
        data=[X_train, X_train],
        alg_instance=regr,
    )
コード例 #5
0
def main():
    from sklearn.linear_model import Lasso

    # Load data
    X_train, X_test, y_train, y_test = bench.load_data(params)

    # Create our regression object
    regr = Lasso(fit_intercept=params.fit_intercept,
                 alpha=params.alpha,
                 tol=params.tol,
                 max_iter=params.maxiter,
                 copy_X=False)

    # Time fit
    fit_time, _ = bench.measure_function_time(regr.fit,
                                              X_train,
                                              y_train,
                                              params=params)

    # Time predict
    predict_time, yp = bench.measure_function_time(regr.predict,
                                                   X_train,
                                                   params=params)

    train_rmse = bench.rmse_score(y_train, yp)
    train_r2 = bench.r2_score(y_train, yp)
    yp = regr.predict(X_test)
    test_rmse = bench.rmse_score(y_test, yp)
    test_r2 = bench.r2_score(y_test, yp)

    bench.print_output(
        library='sklearn',
        algorithm='lasso',
        stages=['training', 'prediction'],
        params=params,
        functions=['Lasso.fit', 'Lasso.predict'],
        times=[fit_time, predict_time],
        metric_type=['rmse', 'r2_score', 'iter'],
        metrics=[
            [train_rmse, test_rmse],
            [train_r2, test_r2],
            [int(regr.n_iter_), int(regr.n_iter_)],
        ],
        data=[X_train, X_test],
        alg_instance=regr,
    )
コード例 #6
0
def main():
    from sklearn.linear_model import LinearRegression

    # Load data
    X_train, X_test, y_train, y_test = bench.load_data(
        params, generated_data=['X_train', 'y_train'])

    # Create our regression object
    regr = LinearRegression(fit_intercept=params.fit_intercept,
                            n_jobs=params.n_jobs,
                            copy_X=False)

    # Time fit
    fit_time, _ = bench.measure_function_time(regr.fit,
                                              X_train,
                                              y_train,
                                              params=params)

    # Time predict
    predict_time, yp = bench.measure_function_time(regr.predict,
                                                   X_test,
                                                   params=params)

    test_rmse = bench.rmse_score(y_test, yp)
    test_r2 = bench.r2_score(y_test, yp)
    yp = regr.predict(X_train)
    train_rmse = bench.rmse_score(y_train, yp)
    train_r2 = bench.r2_score(y_train, yp)

    bench.print_output(
        library='sklearn',
        algorithm='lin_reg',
        stages=['training', 'prediction'],
        params=params,
        functions=['Linear.fit', 'Linear.predict'],
        times=[fit_time, predict_time],
        metric_type=['rmse', 'r2_score'],
        metrics=[[train_rmse, test_rmse], [train_r2, test_r2]],
        data=[X_train, X_test],
        alg_instance=regr,
    )
コード例 #7
0
def main():
    from sklearn.linear_model import ElasticNet

    # Load data
    X_train, X_test, y_train, y_test = bench.load_data(params)

    # Create our regression object
    regr = ElasticNet(fit_intercept=params.fit_intercept, l1_ratio=params.l1_ratio,
                      alpha=params.alpha, tol=params.tol,
                      max_iter=params.maxiter)
    # Time fit
    fit_time, _ = bench.measure_function_time(regr.fit, X_train, y_train, params=params)

    # Time predict
    predict_time, y_pred = bench.measure_function_time(regr.predict,
                                                       X_train, params=params)

    train_rmse = bench.rmse_score(y_train, y_pred)
    train_r2 = bench.r2_score(y_train, y_pred)
    y_pred = regr.predict(X_test)
    test_rmse = bench.rmse_score(y_test, y_pred)
    test_r2 = bench.r2_score(y_test, y_pred)

    bench.print_output(
        library='sklearn',
        algorithm='elasticnet',
        stages=['training', 'prediction'],
        params=params,
        functions=['ElasticNet.fit', 'ElasticNet.predict'],
        times=[fit_time, predict_time],
        metric_type=['rmse', 'r2_score', 'iter'],
        metrics=[
            [train_rmse, test_rmse],
            [train_r2, test_r2],
            [int(regr.n_iter_), int(regr.n_iter_)],
        ],
        data=[X_train, X_train],
        alg_instance=regr,
    )
コード例 #8
0
ファイル: ridge.py プロジェクト: mbatoul/scikit-learn_bench
def main():
    from sklearn.linear_model import Ridge

    # Load data
    X_train, X_test, y_train, y_test = bench.load_data(
        params, generated_data=['X_train', 'y_train'])

    # Create our regression object
    regr = Ridge(fit_intercept=params.fit_intercept,
                 alpha=params.alpha,
                 solver=params.solver)

    # Time fit
    fit_time, _ = bench.measure_function_time(regr.fit,
                                              X_train,
                                              y_train,
                                              params=params)

    # Time predict
    predict_time, yp = bench.measure_function_time(regr.predict,
                                                   X_test,
                                                   params=params)

    test_rmse = bench.rmse_score(yp, y_test)
    yp = regr.predict(X_train)
    train_rmse = bench.rmse_score(yp, y_train)

    bench.print_output(library='sklearn',
                       algorithm='ridge_regression',
                       stages=['training', 'prediction'],
                       params=params,
                       functions=['Ridge.fit', 'Ridge.predict'],
                       times=[fit_time, predict_time],
                       accuracy_type='rmse',
                       accuracies=[train_rmse, test_rmse],
                       data=[X_train, X_test],
                       alg_instance=regr)
コード例 #9
0
ファイル: lasso.py プロジェクト: ShvetsKS/scikit-learn_bench
             tol=params.tol,
             max_iter=params.maxiter,
             copy_X=False)

columns = ('batch', 'arch', 'prefix', 'function', 'threads', 'dtype', 'size',
           'time')

# Time fit
fit_time, _ = measure_function_time(regr.fit, X_train, y_train, params=params)

# Time predict
predict_time, pred_train = measure_function_time(regr.predict,
                                                 X_train,
                                                 params=params)

train_rmse = rmse_score(pred_train, y_train)
pred_test = regr.predict(X_test)
test_rmse = rmse_score(pred_test, y_test)

print_output(library='sklearn',
             algorithm='lasso',
             stages=['training', 'prediction'],
             columns=columns,
             params=params,
             functions=['Lasso.fit', 'Lasso.predict'],
             times=[fit_time, predict_time],
             accuracy_type='rmse',
             accuracies=[train_rmse, test_rmse],
             data=[X_train, X_test],
             alg_instance=regr)
コード例 #10
0
def test_predict(Xp, model):
    regr_predict = ridge_regression_prediction(fptype=getFPType(Xp))
    return regr_predict.compute(Xp, model)


# Time fit
fit_time, res = bench.measure_function_time(test_fit,
                                            X_train,
                                            y_train,
                                            params=params)

# Time predict
predict_time, yp = bench.measure_function_time(test_predict,
                                               X_test,
                                               res.model,
                                               params=params)

test_rmse = bench.rmse_score(yp.prediction, y_test)
pres = test_predict(X_train, res.model)
train_rmse = bench.rmse_score(pres.prediction, y_train)

bench.print_output(library='daal4py',
                   algorithm='ridge_regression',
                   stages=['training', 'prediction'],
                   params=params,
                   functions=['Ridge.fit', 'Ridge.predict'],
                   times=[fit_time, predict_time],
                   accuracy_type='rmse',
                   accuracies=[train_rmse, test_rmse],
                   data=[X_train, X_test])
コード例 #11
0
def fit(regr, X, y):
    return regr.fit(X, y)


def predict(regr, X):
    return regr.predict(X, predict_model='GPU')


fit_time, _ = bench.measure_function_time(fit,
                                          regr,
                                          X_train,
                                          y_train,
                                          params=params)

y_pred = predict(regr, X_train)
train_rmse = bench.rmse_score(y_pred, y_train)

predict_time, y_pred = bench.measure_function_time(predict,
                                                   regr,
                                                   X_test,
                                                   params=params)
test_rmse = bench.rmse_score(y_pred, y_test)

bench.print_output(library='cuml',
                   algorithm='df_regr',
                   stages=['training', 'prediction'],
                   params=params,
                   functions=['df_regr.fit', 'df_regr.predict'],
                   times=[fit_time, predict_time],
                   metric_type='rmse',
                   metrics=[train_rmse, test_rmse],
コード例 #12
0
# Create our regression object
regr = Lasso(fit_intercept=params.fit_intercept,
             alpha=params.alpha,
             tol=params.tol,
             max_iter=params.maxiter)
# Time fit
fit_time, _ = bench.measure_function_time(regr.fit,
                                          X_train,
                                          y_train,
                                          params=params)

# Time predict
predict_time, pred_train = bench.measure_function_time(regr.predict,
                                                       X_train,
                                                       params=params)

train_rmse = bench.rmse_score(pred_train, y_train)
pred_test = regr.predict(X_test)
test_rmse = bench.rmse_score(pred_test, y_test)

bench.print_output(library='sklearn',
                   algorithm='lasso',
                   stages=['training', 'prediction'],
                   params=params,
                   functions=['Lasso.fit', 'Lasso.predict'],
                   times=[fit_time, predict_time],
                   accuracy_type='rmse',
                   accuracies=[train_rmse, test_rmse],
                   data=[X_train, X_test],
                   alg_instance=regr)
コード例 #13
0
# Create our regression object
regr = Ridge(fit_intercept=params.fit_intercept,
             alpha=params.alpha,
             solver=params.solver)

# Time fit
fit_time, _ = bench.measure_function_time(regr.fit,
                                          X_train,
                                          y_train,
                                          params=params)

# Time predict
predict_time, yp = bench.measure_function_time(regr.predict,
                                               X_test,
                                               params=params)

test_rmse = bench.rmse_score(yp, y_test)
yp = regr.predict(X_train)
train_rmse = bench.rmse_score(yp, y_train)

bench.print_output(library='sklearn',
                   algorithm='ridge_regression',
                   stages=['training', 'prediction'],
                   params=params,
                   functions=['Ridge.fit', 'Ridge.predict'],
                   times=[fit_time, predict_time],
                   accuracy_type='rmse',
                   accuracies=[train_rmse, test_rmse],
                   data=[X_train, X_test],
                   alg_instance=regr)
コード例 #14
0
    # Time fit and predict
    fit_time, res = measure_function_time(
        df_regr_fit,
        X_train,
        y_train,
        n_trees=params.num_trees,
        n_features_per_node=params.max_features,
        max_depth=params.max_depth,
        min_impurity=params.min_impurity_decrease,
        bootstrap=params.bootstrap,
        seed=params.seed,
        params=params)

    yp = df_regr_predict(X_train, res)
    train_rmse = rmse_score(yp, y_train)

    predict_time, yp = measure_function_time(df_regr_predict,
                                             X_test,
                                             res,
                                             params=params)

    test_rmse = rmse_score(yp, y_test)

    print_output(library='daal4py',
                 algorithm='decision_forest_regression',
                 stages=['training', 'prediction'],
                 columns=columns,
                 params=params,
                 functions=['df_regr.fit', 'df_regr.predict'],
                 times=[fit_time, predict_time],
コード例 #15
0
ファイル: linear.py プロジェクト: masdevas/scikit-learn_bench
columns = ('batch', 'arch', 'prefix', 'function', 'threads', 'dtype', 'size',
           'method', 'time')

# Time fit
fit_time, res = measure_function_time(test_fit,
                                      X_train,
                                      y_train,
                                      params=params)

# Time predict
predict_time, pres = measure_function_time(test_predict,
                                           X_test,
                                           res.model,
                                           params=params)

test_rmse = rmse_score(pres.prediction, y_test)
pres = test_predict(X_train, res.model)
train_rmse = rmse_score(pres.prediction, y_train)

print_output(library='daal4py',
             algorithm='linear_regression',
             stages=['training', 'prediction'],
             columns=columns,
             params=params,
             functions=['Linear.fit', 'Linear.predict'],
             times=[fit_time, predict_time],
             accuracy_type='rmse',
             accuracies=[train_rmse, test_rmse],
             data=[X_train, X_test])
コード例 #16
0
ファイル: svr.py プロジェクト: owerbat/scikit-learn_bench
X_train, X_test, y_train, y_test = bench.load_data(params)

if params.gamma is None:
    params.gamma = 1.0 / X_train.shape[1]

cache_size_bytes = bench.get_optimal_cache_size(X_train.shape[0],
                                                max_cache=params.max_cache_size)
params.cache_size_mb = cache_size_bytes / 1024**2
params.n_classes = y_train[y_train.columns[0]].nunique()

regr = SVR(C=params.C, epsilon=params.epsilon, kernel=params.kernel,
           cache_size=params.cache_size_mb, tol=params.tol, gamma=params.gamma,
           degree=params.degree)

fit_time, _ = bench.measure_function_time(regr.fit, X_train, y_train, params=params)

predict_train_time, y_pred = bench.measure_function_time(
    regr.predict, X_train, params=params)
train_rmse = bench.rmse_score(y_train, y_pred)

predict_test_time, y_pred = bench.measure_function_time(
    regr.predict, X_test, params=params)
test_rmse = bench.rmse_score(y_test, y_pred)

bench.print_output(library='cuml', algorithm='svr',
                   stages=['training', 'prediction'], params=params,
                   functions=['SVR.fit', 'SVR.predict'],
                   times=[fit_time, predict_train_time], metric_type='rmse',
                   metrics=[train_rmse, test_rmse], data=[X_train, X_train],
                   alg_instance=regr)
コード例 #17
0
    n_estimators=params.num_trees,
    max_depth=params.max_depth,
    max_features=params.max_features,
    min_samples_split=params.min_samples_split,
    max_leaf_nodes=params.max_leaf_nodes,
    min_impurity_decrease=params.min_impurity_decrease,
    bootstrap=params.bootstrap,
    random_state=params.seed)

columns = ('batch', 'arch', 'prefix', 'function', 'threads', 'dtype', 'size',
           'num_trees', 'time')

fit_time, _ = measure_function_time(regr.fit, X_train, y_train, params=params)

y_pred = regr.predict(X_train)
train_rmse = rmse_score(y_pred, y_train)

predict_time, y_pred = measure_function_time(regr.predict,
                                             X_test,
                                             params=params)
test_rmse = rmse_score(y_pred, y_test)

print_output(library='sklearn',
             algorithm='decision_forest_regression',
             stages=['training', 'prediction'],
             columns=columns,
             params=params,
             functions=['df_regr.fit', 'df_regr.predict'],
             times=[fit_time, predict_time],
             accuracy_type='rmse',
             accuracies=[train_rmse, test_rmse],