def get_butil(name): if len(sys.argv) <= 1: sys.argv.append('cpu') USE_GPU = True if sys.argv[1] == 'gpu' else False os.environ["CUDA_VISIBLE_DEVICES"] = "0" if USE_GPU else "" return BenchmarkUtil(model_name=name.split('/')[-1].split('.')[0] + ' {}'.format(sys.argv[1]), stats_save_path='/tmp/stats/', monitors=[CPUMonitor, MemoryMonitor, GPUMonitor])
""" import os import sys import json if len(sys.argv) <= 1: sys.argv.append('cpu') USE_GPU = True if sys.argv[1] == 'gpu' else False os.environ["CUDA_VISIBLE_DEVICES"] = "0" if USE_GPU else "" from benchmark.benchmark import BenchmarkUtil from benchmark.system_monitors import CPUMonitor, MemoryMonitor, GPUMonitor butil = BenchmarkUtil( model_name='EP11 Reinitializable_iterator_switch {}'.format(sys.argv[1]), stats_save_path='/tmp/stats/', monitors=[CPUMonitor, MemoryMonitor, GPUMonitor]) @butil.monitor def main(): # Imports import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import time # Global Variables EPOCH = 100 BATCH_SIZE = 32 DISPLAY_STEP = 1
""" import os import sys import json import time if len(sys.argv) <= 1: sys.argv.append('cpu') USE_GPU = True if sys.argv[1] == 'gpu' else False os.environ["CUDA_VISIBLE_DEVICES"] = "0" if USE_GPU else "" from benchmark.benchmark import BenchmarkUtil from benchmark.system_monitors import CPUMonitor, MemoryMonitor, GPUMonitor butil = BenchmarkUtil(model_name='EP3 Feedable Dataset {}'.format(sys.argv[1]), stats_save_path='/tmp/stats/', monitors=[CPUMonitor, MemoryMonitor, GPUMonitor]) @butil.monitor def main(): # Imports import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # Global Variables EPOCH = 100 BATCH_SIZE = 32 DISPLAY_STEP = 1 mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
..todo:: """ import os import sys import json if len(sys.argv) <= 1: sys.argv.append('cpu') USE_GPU = True if sys.argv[1] == 'gpu' else False os.environ["CUDA_VISIBLE_DEVICES"] = "0" if USE_GPU else "" from benchmark.benchmark import BenchmarkUtil from benchmark.system_monitors import CPUMonitor, MemoryMonitor, GPUMonitor butil = BenchmarkUtil(model_name='EP1 Basic Placeholder {}'.format( sys.argv[1]), stats_save_path='/tmp/stats/', monitors=[CPUMonitor, MemoryMonitor, GPUMonitor]) @butil.monitor def main(): # Imports import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import time # Global Variables EPOCH = 100 BATCH_SIZE = 32 DISPLAY_STEP = 1
""" import os import sys import json import time if len(sys.argv) <= 1: sys.argv.append('cpu') USE_GPU = True if sys.argv[1] == 'gpu' else False os.environ["CUDA_VISIBLE_DEVICES"] = "0" if USE_GPU else "" from benchmark.benchmark import BenchmarkUtil from benchmark.system_monitors import CPUMonitor, MemoryMonitor, GPUMonitor butil = BenchmarkUtil(model_name='EP19 Feedable Iterator Fetch OP {}'.format( sys.argv[1]), stats_save_path='/tmp/stats/', monitors=[CPUMonitor, MemoryMonitor, GPUMonitor]) @butil.monitor def main(): # Imports import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # Global Variables EPOCH = 100 BATCH_SIZE = 32 DISPLAY_STEP = 1 mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
import sys import time import json if len(sys.argv) <= 1: sys.argv.append('cpu') USE_GPU = True if sys.argv[1] == 'gpu' else False os.environ["CUDA_VISIBLE_DEVICES"] = "0" if USE_GPU else "" from benchmark.benchmark import BenchmarkUtil from benchmark.system_monitors import CPUMonitor, MemoryMonitor, GPUMonitor import random butil = BenchmarkUtil( model_name= 'EP15 Feedable Iterator Multiple Dataset Initializable Iterator {}'.format( sys.argv[1]), stats_save_path='/tmp/stats/', monitors=[CPUMonitor, MemoryMonitor, GPUMonitor]) # @butil.monitor def main(): # Imports import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # Global Variables EPOCH = 100 BATCH_SIZE = 32 bs_placeholder = tf.placeholder(dtype=tf.int64) DISPLAY_STEP = 1
| **@version:** v0.0.1 | | **Description:** | Basic Placeholders | **Sphinx Documentation Status:** Complete | ..todo:: """ import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" from benchmark.benchmark import BenchmarkUtil from benchmark.system_monitors import CPUMonitor, MemoryMonitor, GPUMonitor butil = BenchmarkUtil(model_name='Basic Placeholder', stats_save_path='/tmp/stats/', monitors=[CPUMonitor, MemoryMonitor, GPUMonitor]) @butil.monitor def main(): # Imports import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import time start = time.time() # Global Variables EPOCH = 1 BATCH_SIZE = 32
# Imports import os import sys if len(sys.argv) <= 1: sys.argv.append('cpu') USE_GPU = True if sys.argv[1] == 'gpu' else False os.environ["CUDA_VISIBLE_DEVICES"] = "0" if USE_GPU else "" from benchmark.benchmark import BenchmarkUtil from benchmark.system_monitors import CPUMonitor, MemoryMonitor, GPUMonitor butil = BenchmarkUtil(model_name='EP12 Dataset Inbuilt Epoch {}'.format( sys.argv[1]), stats_save_path='/tmp/stats/', monitors=[CPUMonitor, MemoryMonitor, GPUMonitor]) @butil.monitor def main(): # Imports import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import time start = time.time() # Global Variables EPOCH = 100 BATCH_SIZE = 32 mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
| | **Description:** | | | **Sphinx Documentation Status:** -- | ..todo:: """ import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" from benchmark.benchmark import BenchmarkUtil from benchmark.system_monitors import CPUMonitor, MemoryMonitor, GPUMonitor butil = BenchmarkUtil(model_name='Reinitializable Iterator', stats_save_path='/tmp/stats/', monitors=[CPUMonitor, MemoryMonitor, GPUMonitor]) @butil.monitor def main(): # Imports import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import time start = time.time() # Global Variables EPOCH = 100 BATCH_SIZE = 32 DISPLAY_STEP = 1
| | **Description:** | Feedable Dataset | | **Sphinx Documentation Status:** Complete | ..todo:: """ import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" from benchmark.benchmark import BenchmarkUtil from benchmark.system_monitors import CPUMonitor, MemoryMonitor, GPUMonitor butil = BenchmarkUtil(model_name='Feedable Dataset', stats_save_path='/tmp/stats/', monitors=[CPUMonitor, MemoryMonitor, GPUMonitor]) @butil.monitor def main(): # Imports import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import time start = time.time() # Global Variables EPOCH = 100 BATCH_SIZE = 32