def main(): if not os.path.exists(args.output): os.makedirs(args.output) model, img_shape = getmodel(args.model) attacker = attack.Evolutionary( model=model, goal=args.goal, distance_metric=args.distance, max_queries=args.iters, threshold=threshold[args.model]['cos'], ) path = os.path.join('data', 'cfp-{}x{}'.format(img_shape[0], img_shape[1])) Attacker = lambda xs, ys, pairs: attacker.batch_attack(xs, ys, pairs=pairs) run_white(path, Attacker, model, args, threshold[args.model]['cos'])
def main(): model, img_shape = getmodel(args.model) config = { 'eps': args.eps, 'method': attack.FGSM, 'goal': args.goal, 'distance_metric': args.distance, 'threshold': threshold_cfp[args.model]['cos'], 'steps': args.steps, 'bin_steps': args.bin_steps, 'model': model, } path = os.path.join('data', 'cfp-{}x{}'.format(img_shape[0], img_shape[1])) Attacker = lambda xs, ys, pairs: binsearch_basic( xs=xs, ys=ys, pairs=pairs, **config) run_white(path, Attacker, model, args, threshold_cfp[args.model]['cos'])
def main(): if not os.path.exists(args.output): os.makedirs(args.output) model, img_shape = getmodel(args.model) attacker = attack.CW(model=model, goal=args.goal, distance_metric=args.distance, iteration=args.iters, threshold=threshold_cfp[args.model]['cos'], search_steps=args.steps, binsearch_steps=args.bin_steps, confidence=args.confidence, learning_rate=args.lr, c=args.c ) path = os.path.join('data', 'cfp-{}x{}'.format(img_shape[0], img_shape[1])) Attacker = lambda xs, ys, pairs: attacker.batch_attack(xs, ys, pairs=pairs) run_white(path, Attacker, model, args, threshold_cfp[args.model]['cos'])
def main(): if not os.path.exists(args.output): os.makedirs(args.output) model, img_shape = getmodel(args.model) config = { 'eps': args.eps, 'method': attack.MIM, 'goal': args.goal, 'distance_metric': args.distance, 'threshold': threshold_cfp[args.model]['cos'], 'steps': args.steps, 'bin_steps': args.bin_steps, 'model': model, 'mu': args.mu, 'iters': args.iters, } path = os.path.join('data', 'cfp-{}x{}'.format(img_shape[0], img_shape[1])) Attacker = lambda xs, ys, pairs: binsearch_alpha(xs=xs, ys=ys, pairs=pairs, **config) run_white(path, Attacker, model, args, threshold_cfp[args.model]['cos'])