コード例 #1
0
    def evaluate(self, p, sim, plt):
        start_time = time.time()
        while time.time() - start_time < p.T:
            sim.run(p.dt, progress_bar=False)
        #sim.run(p.T)
    
        self.link.write(self.path + 'duty_cycle_sp', '0')

        if plt is not None:
            plt.plot(sim.data[self.p_t], sim.data[self.p_desired])
            plt.plot(sim.data[self.p_t], sim.data[self.p_q])
            #plt.plot(sim.data[self.p_t], sim.data[self.p_u])

        rate = len(sim.data[self.p_t]) / float(p.T)

        q = sim.data[self.p_q][:,0]
        d = sim.data[self.p_desired][:,0]
        t = sim.data[self.p_t][:,0]
        
        offset = benchmark.find_offset(q, d)
        #offset = 1

        delay = np.mean(t[offset:]-t[:-offset])

        diff = d[:-offset] - q[offset:]
        N = len(q) / 2
        diff = diff[N:]
        rmse = np.sqrt(np.mean(diff**2))


        return dict(rate=rate, delay=delay, rmse=rmse)
コード例 #2
0
    def evaluate(self, p, sim, plt):
        #start_time = time.time()
        #while time.time() - start_time < p.T:
        #    sim.run(p.dt, progress_bar=False)
        sim.run(p.T)

        #q = sim.data[self.p_q][:,0]
        q = np.array(self.system_state)[:,0]
        d = np.array(self.system_desired)[:,0]
        t = np.array(self.system_times)

        N = len(q) / 2

        # find an offset that lines up the data best (this is the delay)
        offsets = []
        for i in range(p.D):
            #q = sim.data[self.p_q][:,i]
            q = np.array(self.system_state)[:,i]
            d = np.array(self.system_desired)[:,i]
            offset = benchmark.find_offset(q[N:], d[N:])
            if offset == 0:
                offset = 1
            offsets.append(offset)
        offset = int(np.mean(offsets))

        delay = np.mean(t[offset:]-t[:-offset])
        spinn_dt = np.mean(t[1:]-t[:-1])

        if plt is not None:
            plt.plot(t[offset:], d[:-offset], label='$q_d$')
            #plt.plot(t[offset:], d[offset:])
            t2 = self.system_times
            plt.plot(t2[offset:], q[offset:], label='$q$')
            plt.legend(loc='upper left')

            #plt.plot(np.correlate(d, q, 'full')[len(q):])


        diff = np.array(self.system_desired)[:-offset] - np.array(self.system_state)[offset:]
        diff = diff[N:]
        rmse = np.sqrt(np.mean(diff.flatten()**2))


        return dict(delay=delay, rmse=rmse, spinn_dt=spinn_dt)