def get_invocations(benchmark: Benchmark): """ Returns a list of invocations that invoke the tool for the given benchmark. It can be assumed that the current directory is the directory from which execute_invocations.py is executed. For QCOMP 2020, this should return a list of invocations for all tracks in which the tool can take part. For each track an invocation with default settings has to be provided and in addition, an optimized setting (e.g., the fastest engine and/or solution technique for this benchmark) can be specified. Only information about the model type, the property type and the state space size are allowed to be used to tweak the parameters. If this benchmark is not supported, an empty list has to be returned. """ if not is_benchmark_supported(benchmark): return [] short = benchmark.get_model_short_name() prop = benchmark.get_property_name() prop_type = benchmark.get_short_property_type() params = benchmark.get_parameter_values_string() instance = short + "." + params size = benchmark.get_num_states_tweak() invocations = [] benchmark_settings = "--props " + benchmark.get_property_name() if benchmark.get_open_parameter_def_string() != "": benchmark_settings += " -E " + benchmark.get_open_parameter_def_string( ) default_base = "modes/modest modes --unsafe --max-run-length 0 " + benchmark.get_janifilename( ) + " " + benchmark_settings + " -O out.txt Minimal" # # Track "probably-epsilon-correct" # precision = "5e-2" default_cmd = default_base + " --width $PRECISION --relative-width" if benchmark.is_dtmc() or benchmark.is_ctmc(): add_invocations(invocations, "probably-epsilon-correct", default_cmd.replace("$PRECISION", precision)) # # Track "often-epsilon-correct" # precision = "1e-3" if benchmark.is_dtmc() or benchmark.is_ctmc(): add_invocations(invocations, "often-epsilon-correct", default_cmd.replace("$PRECISION", precision)) # # Track "often-epsilon-correct-10-min" # if benchmark.is_dtmc() or benchmark.is_ctmc(): default_cmd = default_base + " -N 2147483647" else: default_cmd = default_base + " --width 2e-2 --relative-width --lss Interruptible 1000000 -L 1000" if benchmark.is_pta(): default_cmd += " --digital-clocks" add_invocations(invocations, "often-epsilon-correct-10-min", default_cmd) # # Done # return invocations
def is_benchmark_supported(benchmark: Benchmark): """ Returns True if the provided benchmark is supported by the tool and if the given benchmark should appear on the generated benchmark list """ # DFTRES only supports Markovian models with purely spurious nondeterminism if not (benchmark.is_dtmc() or benchmark.is_ctmc() or benchmark.is_ma()): return False # User-defined functions (the "call" JANI operator) are not supported if "functions" in benchmark.get_jani_features(): return False # Only time-accumulating or time-instant reward queries supported_queries = [ "prob-reach", "prob-reach-time-bounded", "steady-state-prob" ] if not benchmark.get_property_type() in supported_queries: return False # No support for real variables yet real_vars = [ v for v in benchmark.load_jani_file()["variables"] \ if v["type"] == "real"] if 0 < len(real_vars): return False # Some MAs have not-obviously-spurious nondeterminism and can't be simulated unsupported_models = [ "bitcoin-attack", ] # The arithmetic operations of some models aren't supported unsupported_models += [ "majority", "philosophers", "speed-ind", "dpm", "readers-writers" ] if benchmark.get_model_short_name() in unsupported_models: return False # All other models are supported if ONLY_QCOMP_2020_BENCHMARKS: return benchmark.get_identifier() in QComp2020_benchmarks else: return True
def get_invocations(benchmark : Benchmark): """ Returns a list of invocations that invoke the tool for the given benchmark. It can be assumed that the current directory is the directory from which execute_invocations.py is executed. For QCOMP 2020, this should return a list of invocations for all tracks in which the tool can take part. For each track an invocation with default settings has to be provided and in addition, an optimized setting (e.g., the fastest engine and/or solution technique for this benchmark) can be specified. Only information about the model type, the property type and the state space size are allowed to be used to tweak the parameters. If this benchmark is not supported, an empty list has to be returned. """ if not is_benchmark_supported(benchmark): return [] short = benchmark.get_model_short_name() prop = benchmark.get_property_name() prop_type = benchmark.get_short_property_type() params = benchmark.get_parameter_values_string() instance = short + "." + params size = benchmark.get_num_states_tweak() invocations = [] benchmark_settings = "" if benchmark.get_open_parameter_def_string() != "": benchmark_settings += "-E " + benchmark.get_open_parameter_def_string() + " " benchmark_settings += "--props " + benchmark.get_property_name() default_base = "mcsta/modest mcsta " + benchmark.get_janifilename() + " " + benchmark_settings + " -O out.txt Minimal --unsafe --es" specific_base = default_base + tweak_memory(benchmark) # specific settings default_base += " -S Memory" # # Track "floating-point-correct" # skip = False precision = "0" default_cmd = default_base + " --no-partial-results" specific_cmd = specific_base + " --no-partial-results" if prop_type == "S" or (benchmark.is_ma() or benchmark.is_ctmc()) and benchmark.is_time_bounded_probabilistic_reachability(): # long-run average or time-bounded on MA/CTMC: no fp-exact algorithm available skip = True elif prop_type == "P": # probabilistic reachability: try value iteration until fp-fixpoint default_cmd += " --p0 --p1 --epsilon 0 --absolute-epsilon" specific_cmd += " --p0 --p1 --epsilon 0 --absolute-epsilon" elif prop_type == "E": # expected reward: try value iteration until fp-fixpoint default_cmd += " --epsilon 0 --absolute-epsilon" specific_cmd += " --epsilon 0 --absolute-epsilon" elif prop_type == "Pb": # state elimination is fp-exact default_cmd += " --reward-bounded-alg StateElimination" if "-S Memory" in specific_cmd: specific_cmd += " --reward-bounded-alg StateElimination" else: specific_cmd += " --epsilon 0 --absolute-epsilon" if not skip: add_invocations(invocations, "floating-point-correct", default_cmd, tweak(benchmark, specific_cmd)) # # Track "epsilon-correct" # skip = False precision = "1e-6" default_cmd = default_base + " --no-partial-results" specific_cmd = specific_base + " --no-partial-results" if prop_type == "S": # long-run average: default is the sound algorithm based on value iteration default_cmd += " --width $PRECISION --relative-width" specific_cmd += " --width $PRECISION --relative-width" elif (benchmark.is_ma() or benchmark.is_ctmc()) and benchmark.is_time_bounded_probabilistic_reachability(): # time-bounded probability for CTMC and MA: default is sound Unif+ default_cmd += " --width $PRECISION --relative-width" specific_cmd += " --width $PRECISION --relative-width" elif benchmark.is_pta() and prop_type == "Pb": # time-bounded reachability for PTA: state elimination recommended default_cmd += " --reward-bounded-alg StateElimination" if "-S Memory" in specific_cmd: specific_cmd += " --reward-bounded-alg StateElimination" else: specific_cmd += " --alg IntervalIteration --width $PRECISION --relative-width" elif prop_type == "Pb": # reward-bounded probability: default is unsound VI, so need to change to II (SVI and OVI not yet implemented for this case) default_cmd += " --alg IntervalIteration --width $PRECISION --relative-width" specific_cmd += " --alg IntervalIteration --width $PRECISION --relative-width" else: # unbounded probability or expected reward: default is unsound VI, so need to change to OVI default_cmd += " --alg OptimisticValueIteration --epsilon $PRECISION --width $PRECISION --relative-width" specific_cmd += " --alg OptimisticValueIteration --epsilon $PRECISION --width $PRECISION --relative-width" if prop_type == "P" and benchmark.is_dtmc() or benchmark.is_ctmc(): # for unbounded probabilities on DTMC and CTMC: use 0/1 preprocessing default_cmd += " --p0 --p1" specific_cmd += " --p0 --p1" if not skip: add_invocations(invocations, "epsilon-correct", default_cmd.replace("$PRECISION", precision), tweak(benchmark, specific_cmd).replace("$PRECISION", precision)) # # Track "probably-epsilon-correct" # skip = False precision = "5e-2" if not skip: add_invocations(invocations, "probably-epsilon-correct", default_cmd.replace("$PRECISION", precision), tweak(benchmark, specific_cmd).replace("$PRECISION", precision)) # # Track "often-epsilon-correct" # skip = False precision = "1e-3" default_cmd = default_base + " --no-partial-results" specific_cmd = specific_base + " --no-partial-results" if prop_type == "S": # long-run average: default is the sound algorithm based on value iteration default_cmd += " --width $PRECISION --relative-width" specific_cmd += " --width $PRECISION --relative-width" elif (benchmark.is_ma() or benchmark.is_ctmc()) and benchmark.is_time_bounded_probabilistic_reachability(): # time-bounded probability for CTMC and MA: default is sound Unif+ default_cmd += " --width $PRECISION --relative-width" specific_cmd += " --width $PRECISION --relative-width" elif benchmark.is_pta() and prop_type == "Pb": # time-bounded reachability for PTA: state elimination recommended default_cmd += " --reward-bounded-alg StateElimination" if "-S Memory" in specific_cmd: specific_cmd += " --reward-bounded-alg StateElimination" else: specific_cmd += " --alg IntervalIteration --width $PRECISION --relative-width" elif prop_type == "Pb": # reward-bounded probability: default is unsound VI, which is okay here pass else: # unbounded probability or expected reward: default is unsound VI, which is okay here if prop_type == "P" and benchmark.is_dtmc() or benchmark.is_ctmc(): # for unbounded probabilities on DTMC and CTMC: use 0/1 preprocessing default_cmd += " --p0 --p1" specific_cmd += " --p0 --p1" if not skip: add_invocations(invocations, "often-epsilon-correct", default_cmd.replace("$PRECISION", precision), tweak(benchmark, specific_cmd).replace("$PRECISION", precision)) # # Track "often-epsilon-correct-10-min" # skip = False precision = "0" # so we just run for the full 10 minutes (or until we get an exact result) default_cmd = default_base specific_cmd = specific_base if prop_type == "S": skip = True elif (benchmark.is_ma() or benchmark.is_ctmc()) and benchmark.is_time_bounded_probabilistic_reachability(): default_cmd += " --width 0" specific_cmd += " --width 0" elif prop_type == "Pb": # reward-bounded reachability for DTMC, MDP, and PTA default_cmd += " --reward-bounded-alg StateElimination" if "-S Memory" in specific_cmd: specific_cmd += " --reward-bounded-alg StateElimination" else: specific_cmd += " --epsilon 0" else: default_cmd += " --epsilon 0" specific_cmd += " --epsilon 0" if prop_type == "P" and benchmark.is_dtmc() or benchmark.is_ctmc(): # for unbounded probabilities on DTMC and CTMC: use 0/1 preprocessing default_cmd += " --p0 --p1" specific_cmd += " --p0 --p1" if not skip: add_invocations(invocations, "often-epsilon-correct-10-min", default_cmd, tweak(benchmark, specific_cmd)) # # Done # return invocations