def __init__(self, a=1.0, b=5.1 / (4.0 * np.pi**2), c=5 / np.pi, r=6.0, s=10.0, t=1 / (8 * np.pi)): assert isinstance(a, float) assert isinstance(b, float) assert isinstance(c, float) assert isinstance(r, float) assert isinstance(s, float) assert isinstance(t, float) dim_bx = 2 bounds = np.array([ [-5, 10], [0, 15], ]) global_minimizers = np.array([ [-np.pi, 12.275], [np.pi, 2.275], [9.42478, 2.475], ]) global_minimum = 0.397887 function = lambda bx: fun_target(bx, dim_bx, a, b, c, r, s, t) Function.__init__(self, dim_bx, bounds, global_minimizers, global_minimum, function)
def __init__(self): dim_bx = 1 bounds = np.array([ [0.5, 2.5], ]) global_minimizers = np.array([ [0.54856405], ]) global_minimum = -0.86901113 function = lambda bx: fun_target(bx, dim_bx) Function.__init__(self, dim_bx, bounds, global_minimizers, global_minimum, function)
def __init__(self): dim_bx = 2 bounds = np.array([ [-100.0, 100.0], [-100.0, 100.0], ]) global_minimizers = np.array([ [0.0, 0.0], ]) global_minimum = 0.0 function = lambda bx: fun_target(bx, dim_bx) Function.__init__(self, dim_bx, bounds, global_minimizers, global_minimum, function)
def __init__(self): dim_bx = 2 bounds = np.array([ [-3.0, 3.0], [-2.0, 2.0], ]) global_minimizers = np.array([ [0.0898, -0.7126], [-0.0898, 0.7126], ]) global_minimum = -1.0316 function = lambda bx: fun_target(bx, dim_bx) Function.__init__(self, dim_bx, bounds, global_minimizers, global_minimum, function)
def __init__(self, bounds=np.array([ [-10, 10], ]), slope=1.0 ): assert isinstance(slope, float) assert isinstance(bounds, np.ndarray) assert len(bounds.shape) == 2 assert bounds.shape[0] == 1 assert bounds.shape[1] == 2 assert bounds[0, 0] < bounds[0, 1] dim_bx = bounds.shape[0] global_minimizers = np.array([ [slope * bounds[0, 0]], ]) global_minimum = slope * bounds[0, 0] function = lambda bx: fun_target(bx, dim_bx, slope) Function.__init__(self, dim_bx, bounds, global_minimizers, global_minimum, function)
def __init__(self, bounds=np.array( [ [-512.0, 512.0], [-512.0, 512.0], ])): assert isinstance(bounds, np.ndarray) assert len(bounds.shape) == 2 assert bounds.shape[1] == 2 dim_bx = 2 assert bounds.shape[0] == dim_bx global_minimizers = np.array([ [512.0, 404.2319], ]) global_minimum = -959.64066 function = lambda bx: fun_target(bx, dim_bx) Function.__init__(self, dim_bx, bounds, global_minimizers, global_minimum, function)
def __init__(self, dim_problem): assert isinstance(dim_problem, int) dim_bx = np.inf bounds = np.array([ [-2.048, 2.048], ]) global_minimizers = np.array([ [1.0], ]) global_minimum = 0.0 dim_problem = dim_problem function = lambda bx: fun_target(bx, dim_problem) Function.__init__(self, dim_bx, bounds, global_minimizers, global_minimum, function, dim_problem=dim_problem)
def __init__(self, steps=[-10., -5., 0., 5., 10.], step_values=[-2., 0., 1., -1.], ): assert isinstance(steps, list) assert isinstance(step_values, list) assert len(steps) == len(step_values) + 1 assert isinstance(steps[0], float) assert isinstance(step_values[0], float) assert np.all(np.sort(steps) == np.asarray(steps)) dim_bx = 1 bounds = np.array([ [np.min(steps), np.max(steps)], ]) global_minimizers = np.array([ [steps[np.argmin(step_values)]], ]) global_minimum = np.min(step_values) function = lambda bx: fun_target(bx, dim_bx, steps, step_values) Function.__init__(self, dim_bx, bounds, global_minimizers, global_minimum, function)
def __init__(self, bounds=np.array([ [0.0, 1.0], [0.0, 1.0], [0.0, 1.0], [0.0, 1.0], [0.0, 1.0], [0.0, 1.0], ])): assert isinstance(bounds, np.ndarray) assert len(bounds.shape) == 2 assert bounds.shape[1] == 2 dim_bx = 6 assert bounds.shape[0] == dim_bx global_minimizers = np.array([ [0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.6573], ]) global_minimum = -3.322368 function = lambda bx: fun_target(bx, dim_bx) Function.__init__(self, dim_bx, bounds, global_minimizers, global_minimum, function)
def __init__(self, bounds = np.array([ [-10.0, 10.0], ]), constant=0.0 ): assert isinstance(constant, float) assert isinstance(bounds, np.ndarray) assert len(bounds.shape) == 2 assert bounds.shape[0] == 1 assert bounds.shape[1] == 2 assert bounds[0, 0] < bounds[0, 1] dim_bx = bounds.shape[0] min_bx = bounds[0, 0] max_bx = bounds[0, 1] global_minimizers = np.array([ [min_bx], [max_bx], ]) global_minimum = constant function = lambda bx: fun_target(bx, dim_bx, constant) Function.__init__(self, dim_bx, bounds, global_minimizers, global_minimum, function)