def _add(self, deployment_pb, bento_pb, bento_path): if loader._is_remote_path(bento_path): with loader._resolve_remote_bundle_path(bento_path) as local_path: return self._add(deployment_pb, bento_pb, local_path) deployment_spec = deployment_pb.spec lambda_deployment_config = deployment_spec.aws_lambda_operator_config bento_service_metadata = bento_pb.bento.bento_service_metadata lambda_s3_bucket = generate_aws_compatible_string( 'btml-{namespace}-{name}-{random_string}'.format( namespace=deployment_pb.namespace, name=deployment_pb.name, random_string=uuid.uuid4().hex[:6].lower(), ) ) try: create_s3_bucket_if_not_exists( lambda_s3_bucket, lambda_deployment_config.region ) _deploy_lambda_function( deployment_pb=deployment_pb, bento_service_metadata=bento_service_metadata, deployment_spec=deployment_spec, lambda_s3_bucket=lambda_s3_bucket, lambda_deployment_config=lambda_deployment_config, bento_path=bento_path, ) return ApplyDeploymentResponse(status=Status.OK(), deployment=deployment_pb) except BentoMLException as error: if lambda_s3_bucket and lambda_deployment_config: _cleanup_s3_bucket_if_exist( lambda_s3_bucket, lambda_deployment_config.region ) raise error
def _apply(self, deployment_pb, bento_pb, yatai_service, bento_path): if loader._is_remote_path(bento_path): with loader._resolve_remote_bundle_path(bento_path) as local_path: return self._apply(deployment_pb, bento_pb, yatai_service, local_path) deployment_spec = deployment_pb.spec aws_config = deployment_spec.aws_lambda_operator_config bento_service_metadata = bento_pb.bento.bento_service_metadata template = 'aws-python3' if version.parse(bento_service_metadata.env.python_version ) < version.parse('3.0.0'): template = 'aws-python' api_names = ([aws_config.api_name] if aws_config.api_name else [api.name for api in bento_service_metadata.apis]) ensure_deploy_api_name_exists_in_bento( [api.name for api in bento_service_metadata.apis], api_names) with TempDirectory() as serverless_project_dir: init_serverless_project_dir( serverless_project_dir, bento_path, deployment_pb.name, deployment_spec.bento_name, template, ) generate_aws_lambda_handler_py(deployment_spec.bento_name, api_names, serverless_project_dir) generate_aws_lambda_serverless_config( bento_service_metadata.env.python_version, deployment_pb.name, api_names, serverless_project_dir, aws_config.region, # BentoML deployment namespace is mapping to serverless `stage` # concept stage=deployment_pb.namespace, ) logger.info( 'Installing additional packages: serverless-python-requirements' ) install_serverless_plugin("serverless-python-requirements", serverless_project_dir) logger.info('Deploying to AWS Lambda') call_serverless_command(["deploy"], serverless_project_dir) res_deployment_pb = Deployment(state=DeploymentState()) res_deployment_pb.CopyFrom(deployment_pb) state = self.describe(res_deployment_pb, yatai_service).state res_deployment_pb.state.CopyFrom(state) return ApplyDeploymentResponse(status=Status.OK(), deployment=res_deployment_pb)
def _add(self, deployment_pb, bento_pb, bento_path): if loader._is_remote_path(bento_path): with loader._resolve_remote_bundle_path(bento_path) as local_path: return self._add(deployment_pb, bento_pb, local_path) deployment_spec = deployment_pb.spec sagemaker_config = deployment_spec.sagemaker_operator_config raise_if_api_names_not_found_in_bento_service_metadata( bento_pb.bento.bento_service_metadata, [sagemaker_config.api_name]) sagemaker_client = boto3.client('sagemaker', sagemaker_config.region) with TempDirectory() as temp_dir: sagemaker_project_dir = os.path.join(temp_dir, deployment_spec.bento_name) _init_sagemaker_project( sagemaker_project_dir, bento_path, bento_pb.bento.bento_service_metadata.env.docker_base_image, ) ecr_image_path = create_and_push_docker_image_to_ecr( sagemaker_config.region, deployment_spec.bento_name, deployment_spec.bento_version, sagemaker_project_dir, ) try: ( sagemaker_model_name, sagemaker_endpoint_config_name, sagemaker_endpoint_name, ) = _get_sagemaker_resource_names(deployment_pb) _create_sagemaker_model(sagemaker_client, sagemaker_model_name, ecr_image_path, sagemaker_config) _create_sagemaker_endpoint_config( sagemaker_client, sagemaker_model_name, sagemaker_endpoint_config_name, sagemaker_config, ) _create_sagemaker_endpoint( sagemaker_client, sagemaker_endpoint_name, sagemaker_endpoint_config_name, ) except AWSServiceError as e: delete_sagemaker_deployment_resources_if_exist(deployment_pb) raise e return ApplyDeploymentResponse(status=Status.OK(), deployment=deployment_pb)
def _update(self, deployment_pb, current_deployment, bento_pb, bento_path): if loader._is_remote_path(bento_path): with loader._resolve_remote_bundle_path(bento_path) as local_path: return self._update( deployment_pb, current_deployment, bento_pb, local_path ) updated_deployment_spec = deployment_pb.spec updated_lambda_deployment_config = ( updated_deployment_spec.aws_lambda_operator_config ) updated_bento_service_metadata = bento_pb.bento.bento_service_metadata describe_result = self.describe(deployment_pb) if describe_result.status.status_code != status_pb2.Status.OK: error_code, error_message = status_pb_to_error_code_and_message( describe_result.status ) raise YataiDeploymentException( f'Failed fetching Lambda deployment current status - ' f'{error_code}:{error_message}' ) latest_deployment_state = json.loads(describe_result.state.info_json) if 's3_bucket' in latest_deployment_state: lambda_s3_bucket = latest_deployment_state['s3_bucket'] else: raise BentoMLException( 'S3 Bucket is missing in the AWS Lambda deployment, please make sure ' 'it exists and try again' ) _deploy_lambda_function( deployment_pb=deployment_pb, bento_service_metadata=updated_bento_service_metadata, deployment_spec=updated_deployment_spec, lambda_s3_bucket=lambda_s3_bucket, lambda_deployment_config=updated_lambda_deployment_config, bento_path=bento_path, ) return ApplyDeploymentResponse(deployment=deployment_pb, status=Status.OK())
def _add(self, deployment_pb, bento_pb, bento_path): if loader._is_remote_path(bento_path): with loader._resolve_remote_bundle_path(bento_path) as local_path: return self._add(deployment_pb, bento_pb, local_path) deployment_spec = deployment_pb.spec lambda_deployment_config = deployment_spec.aws_lambda_operator_config bento_service_metadata = bento_pb.bento.bento_service_metadata lambda_s3_bucket = generate_aws_compatible_string( 'btml-{namespace}-{name}-{random_string}'.format( namespace=deployment_pb.namespace, name=deployment_pb.name, random_string=uuid.uuid4().hex[:6].lower(), )) try: py_major, py_minor, _ = bento_service_metadata.env.python_version.split( '.') if py_major != '3': raise BentoMLException( 'Python 2 is not supported for Lambda Deployment') python_runtime = 'python{}.{}'.format(py_major, py_minor) artifact_types = [ item.artifact_type for item in bento_service_metadata.artifacts ] if any(i in ['TensorflowSavedModelArtifact', 'KerasModelArtifact'] for i in artifact_types) and (py_major, py_minor) != ('3', '6'): raise BentoMLException( 'For Tensorflow and Keras model, only python3.6 is ' 'supported for AWS Lambda deployment') api_names = ([lambda_deployment_config.api_name] if lambda_deployment_config.api_name else [api.name for api in bento_service_metadata.apis]) raise_if_api_names_not_found_in_bento_service_metadata( bento_service_metadata, api_names) create_s3_bucket_if_not_exists(lambda_s3_bucket, lambda_deployment_config.region) deployment_path_prefix = os.path.join(deployment_pb.namespace, deployment_pb.name) with TempDirectory() as lambda_project_dir: logger.debug( 'Generating cloudformation template.yaml for lambda project at %s', lambda_project_dir, ) template_file_path = _create_aws_lambda_cloudformation_template_file( project_dir=lambda_project_dir, namespace=deployment_pb.namespace, deployment_name=deployment_pb.name, deployment_path_prefix=deployment_path_prefix, api_names=api_names, bento_service_name=deployment_spec.bento_name, s3_bucket_name=lambda_s3_bucket, py_runtime=python_runtime, memory_size=lambda_deployment_config.memory_size, timeout=lambda_deployment_config.timeout, ) logger.debug('Validating generated template.yaml') validate_lambda_template( template_file_path, lambda_deployment_config.region, lambda_project_dir, ) logger.debug( 'Initializing lambda project in directory: %s ...', lambda_project_dir, ) init_sam_project( lambda_project_dir, bento_path, deployment_pb.name, deployment_spec.bento_name, api_names, aws_region=lambda_deployment_config.region, ) for api_name in api_names: build_directory = os.path.join(lambda_project_dir, '.aws-sam', 'build', api_name) logger.debug( 'Checking is function "%s" bundle under lambda size ' 'limit', api_name, ) # Since we only use s3 get object in lambda function, and # lambda function pack their own boto3/botocore modules, # we will just delete those modules from function bundle # directory delete_list = ['boto3', 'botocore'] for name in delete_list: logger.debug('Remove module "%s" from build directory', name) shutil.rmtree(os.path.join(build_directory, name)) total_build_dir_size = total_file_or_directory_size( build_directory) if total_build_dir_size > LAMBDA_FUNCTION_MAX_LIMIT: raise BentoMLException( 'Build function size is over 700MB, max size ' 'capable for AWS Lambda function') if total_build_dir_size >= LAMBDA_FUNCTION_LIMIT: logger.debug( 'Function %s is over lambda size limit, attempting ' 'reduce it', api_name, ) reduce_bundle_size_and_upload_extra_resources_to_s3( build_directory=build_directory, region=lambda_deployment_config.region, s3_bucket=lambda_s3_bucket, deployment_prefix=deployment_path_prefix, function_name=api_name, lambda_project_dir=lambda_project_dir, ) else: logger.debug( 'Function bundle is within Lambda limit, removing ' 'download_extra_resources.py file from function bundle' ) os.remove( os.path.join(build_directory, 'download_extra_resources.py')) logger.info('Packaging AWS Lambda project at %s ...', lambda_project_dir) lambda_package( lambda_project_dir, lambda_deployment_config.region, lambda_s3_bucket, deployment_path_prefix, ) logger.info('Deploying lambda project') stack_name = generate_aws_compatible_string( deployment_pb.namespace + '-' + deployment_pb.name) lambda_deploy( lambda_project_dir, lambda_deployment_config.region, stack_name=stack_name, ) deployment_pb.state.state = DeploymentState.PENDING return ApplyDeploymentResponse(status=Status.OK(), deployment=deployment_pb) except BentoMLException as error: if lambda_s3_bucket and lambda_deployment_config: _cleanup_s3_bucket_if_exist(lambda_s3_bucket, lambda_deployment_config.region) raise error
def _update(self, deployment_pb, current_deployment, bento_pb, bento_path): if loader._is_remote_path(bento_path): with loader._resolve_remote_bundle_path(bento_path) as local_path: return self._update(deployment_pb, current_deployment, bento_pb, local_path) updated_deployment_spec = deployment_pb.spec updated_sagemaker_config = updated_deployment_spec.sagemaker_operator_config sagemaker_client = boto3.client('sagemaker', updated_sagemaker_config.region) try: raise_if_api_names_not_found_in_bento_service_metadata( bento_pb.bento.bento_service_metadata, [updated_sagemaker_config.api_name], ) describe_latest_deployment_state = self.describe(deployment_pb) current_deployment_spec = current_deployment.spec current_sagemaker_config = current_deployment_spec.sagemaker_operator_config latest_deployment_state = json.loads( describe_latest_deployment_state.state.info_json) current_ecr_image_tag = latest_deployment_state[ 'ProductionVariants'][0]['DeployedImages'][0]['SpecifiedImage'] if (updated_deployment_spec.bento_name != current_deployment_spec.bento_name or updated_deployment_spec.bento_version != current_deployment_spec.bento_version): logger.debug( 'BentoService tag is different from current deployment, ' 'creating new docker image and push to ECR') with TempDirectory() as temp_dir: sagemaker_project_dir = os.path.join( temp_dir, updated_deployment_spec.bento_name) _init_sagemaker_project( sagemaker_project_dir, bento_path, bento_pb.bento.bento_service_metadata.env. docker_base_image, ) ecr_image_path = create_and_push_docker_image_to_ecr( updated_sagemaker_config.region, updated_deployment_spec.bento_name, updated_deployment_spec.bento_version, sagemaker_project_dir, ) else: logger.debug('Using existing ECR image for Sagemaker model') ecr_image_path = current_ecr_image_tag ( updated_sagemaker_model_name, updated_sagemaker_endpoint_config_name, sagemaker_endpoint_name, ) = _get_sagemaker_resource_names(deployment_pb) ( current_sagemaker_model_name, current_sagemaker_endpoint_config_name, _, ) = _get_sagemaker_resource_names(current_deployment) if (updated_sagemaker_config.api_name != current_sagemaker_config.api_name or updated_sagemaker_config. num_of_gunicorn_workers_per_instance != current_sagemaker_config. num_of_gunicorn_workers_per_instance or ecr_image_path != current_ecr_image_tag): logger.debug( 'Sagemaker model requires update. Delete current sagemaker model %s' 'and creating new model %s', current_sagemaker_model_name, updated_sagemaker_model_name, ) _delete_sagemaker_model_if_exist(sagemaker_client, current_sagemaker_model_name) _create_sagemaker_model( sagemaker_client, updated_sagemaker_model_name, ecr_image_path, updated_sagemaker_config, ) # When bento service tag is not changed, we need to delete the current # endpoint configuration in order to create new one to avoid name collation if (current_sagemaker_endpoint_config_name == updated_sagemaker_endpoint_config_name): logger.debug( 'Current sagemaker config name %s is same as updated one, ' 'delete it before create new endpoint config', current_sagemaker_endpoint_config_name, ) _delete_sagemaker_endpoint_config_if_exist( sagemaker_client, current_sagemaker_endpoint_config_name) logger.debug( 'Create new endpoint configuration %s', updated_sagemaker_endpoint_config_name, ) _create_sagemaker_endpoint_config( sagemaker_client, updated_sagemaker_model_name, updated_sagemaker_endpoint_config_name, updated_sagemaker_config, ) logger.debug( 'Updating endpoint to new endpoint configuration %s', updated_sagemaker_endpoint_config_name, ) _update_sagemaker_endpoint( sagemaker_client, sagemaker_endpoint_name, updated_sagemaker_endpoint_config_name, ) logger.debug( 'Delete old sagemaker endpoint config %s', current_sagemaker_endpoint_config_name, ) _delete_sagemaker_endpoint_config_if_exist( sagemaker_client, current_sagemaker_endpoint_config_name) except AWSServiceError as e: delete_sagemaker_deployment_resources_if_exist(deployment_pb) raise e return ApplyDeploymentResponse(status=Status.OK(), deployment=deployment_pb)
def _apply( self, deployment_pb, bento_pb, yatai_service, bento_path, prev_deployment=None ): if loader._is_remote_path(bento_path): with loader._resolve_remote_bundle_path(bento_path) as local_path: return self._apply( deployment_pb, bento_pb, yatai_service, local_path, prev_deployment ) deployment_spec = deployment_pb.spec sagemaker_config = deployment_spec.sagemaker_operator_config ensure_deploy_api_name_exists_in_bento( [api.name for api in bento_pb.bento.bento_service_metadata.apis], [sagemaker_config.api_name], ) sagemaker_client = boto3.client('sagemaker', sagemaker_config.region) with TempDirectory() as temp_dir: sagemaker_project_dir = os.path.join(temp_dir, deployment_spec.bento_name) init_sagemaker_project(sagemaker_project_dir, bento_path) ecr_image_path = create_push_docker_image_to_ecr( sagemaker_config.region, deployment_spec.bento_name, deployment_spec.bento_version, sagemaker_project_dir, ) try: model_name = _create_sagemaker_model( sagemaker_client, deployment_spec.bento_name, deployment_spec.bento_version, ecr_image_path, sagemaker_config.api_name, ) except ClientError as e: status = _parse_aws_client_exception(e) status.error_message = ( 'Failed to create model for SageMaker' ' Deployment: {}'.format(status.error_message) ) return ApplyDeploymentResponse(status=status, deployment=deployment_pb) try: endpoint_config_name = _create_sagemaker_endpoint_config( sagemaker_client, model_name, deployment_spec.bento_name, deployment_spec.bento_version, sagemaker_config, ) except ClientError as e: # create endpoint failed, will remove previously created model cleanup_model_error = _cleanup_sagemaker_model( sagemaker_client, deployment_spec.bento_name, deployment_spec.bento_version, ) if cleanup_model_error: cleanup_model_error.error_message = ( 'Failed to clean up model after unsuccessfully ' 'create endpoint config: %s', cleanup_model_error.error_message, ) return ApplyDeploymentResponse( status=cleanup_model_error, deployment=deployment_pb ) status = _parse_aws_client_exception(e) status.error_message = ( 'Failed to create endpoint config for SageMaker deployment: %s', status.error_message, ) return ApplyDeploymentResponse(status=status, deployment=deployment_pb) endpoint_name = generate_aws_compatible_string( deployment_pb.namespace + '-' + deployment_spec.bento_name ) try: if prev_deployment: logger.debug("Updating sagemaker endpoint %s", endpoint_name) update_endpoint_response = sagemaker_client.update_endpoint( EndpointName=endpoint_name, EndpointConfigName=endpoint_config_name ) logger.debug( "AWS update endpoint response: %s", update_endpoint_response ) else: logger.debug("Creating sagemaker endpoint %s", endpoint_name) create_endpoint_response = sagemaker_client.create_endpoint( EndpointName=endpoint_name, EndpointConfigName=endpoint_config_name ) logger.debug( "AWS create endpoint response: %s", create_endpoint_response ) except ClientError as e: # create/update endpoint failed, will remove previously created config # and then remove the model cleanup_endpoint_config_error = _cleanup_sagemaker_endpoint_config( client=sagemaker_client, name=deployment_spec.bento_name, version=deployment_spec.bento_version, ) if cleanup_endpoint_config_error: cleanup_endpoint_config_error.error_message = ( 'Failed to clean up endpoint config after unsuccessfully ' 'apply SageMaker deployment: %s', cleanup_endpoint_config_error.error_message, ) return ApplyDeploymentResponse( status=cleanup_endpoint_config_error, deployment=deployment_pb ) cleanup_model_error = _cleanup_sagemaker_model( client=sagemaker_client, name=deployment_spec.bento_name, version=deployment_spec.bento_version, ) if cleanup_model_error: cleanup_model_error.error_message = ( 'Failed to clean up model after unsuccessfully apply ' 'SageMaker deployment: {}'.format(cleanup_model_error.error_message) ) return ApplyDeploymentResponse( status=cleanup_model_error, deployment=deployment_pb ) status = _parse_aws_client_exception(e) status.error_message = 'Failed to apply SageMaker ' 'deployment: {}'.format( status.error_message ) return ApplyDeploymentResponse(status=status, deployment=deployment_pb) res_deployment_pb = Deployment(state=DeploymentState()) res_deployment_pb.CopyFrom(deployment_pb) return ApplyDeploymentResponse(status=Status.OK(), deployment=res_deployment_pb)