def statin_dgm_truth(network, pr_a, shift=False, restricted=False): graph = network.copy() data = network_to_df(graph) # Running Data Generating Mechanism for A if shift: # If a shift in the Odds distribution is instead specified prob = logistic.cdf(-5.3 + 0.2 * data['L'] + 0.15 * (data['A'] - 30) + 0.4 * np.where(data['R_1'] == 1, 1, 0) + 0.9 * np.where(data['R_2'] == 2, 1, 0) + 1.5 * np.where(data['R_3'] == 3, 1, 0)) odds = probability_to_odds(prob) pr_a = odds_to_probability(np.exp(np.log(odds) + pr_a)) statin = np.random.binomial(n=1, p=pr_a, size=nx.number_of_nodes(graph)) data['statin'] = statin if restricted: # removing other observations from the restricted set attrs = exposure_restrictions(network=network.graph['label'], exposure='statin') exclude = list(attrs.keys()) data = data.loc[~data.index.isin(exclude)].copy() # Running Data Generating Mechanism for Y pr_y = logistic.cdf(-5.05 - 0.8 * data['statin'] + 0.37 * (np.sqrt(data['A'] - 39.9)) + 0.75 * data['R'] + 0.75 * data['L']) cvd = np.random.binomial(n=1, p=pr_y, size=data.shape[0]) return np.mean(cvd)
def diet_dgm(network, restricted=False): """ Parameters ---------- network: input network restricted: whether to use the restricted treatment assignment """ graph = network.copy() data = network_to_df(graph) adj_matrix = nx.adjacency_matrix(graph, weight=None) data['G_mean'] = fast_exp_map(adj_matrix, np.array(data['G']), measure='mean') data['E_mean'] = fast_exp_map(adj_matrix, np.array(data['E']), measure='mean') data['E_sum'] = fast_exp_map(adj_matrix, np.array(data['E']), measure='sum') data['B_mean_dist'] = fast_exp_map(adj_matrix, np.array(data['B']), measure='mean_dist') data['B_mean'] = fast_exp_map(adj_matrix, np.array(data['B']), measure='mean') # Running Data Generating Mechanism for A pr_a = logistic.cdf(-0.5 + 0.05 * (data['B'] - 30) + 0.25 * data['G'] * data['E'] + 0.05 * data['E_mean']) diet = np.random.binomial(n=1, p=pr_a, size=nx.number_of_nodes(graph)) data['diet'] = diet if restricted: # if we are in the restricted scenarios attrs = exposure_restrictions(network=network.graph['label'], exposure='diet') data.update( pd.DataFrame(list(attrs.values()), index=list(attrs.keys()), columns=['diet'])) data['diet_sum'] = fast_exp_map(adj_matrix, np.array(data['diet']), measure='sum') data['diet_t3'] = np.where(data['diet_sum'] > 3, 1, 0) # Running Data Generating Mechanism for Y bmi = (3 + data['B'] - 5 * data['diet'] - 5 * data['diet_t3'] + 3 * data['G'] - 3 * data['E'] - 0.5 * data['E_sum'] + data['B_mean_dist'] + np.random.normal(0, scale=1, size=nx.number_of_nodes(graph))) data['bmi'] = bmi # Adding node information back to graph for n in graph.nodes(): graph.nodes[n]['diet'] = int(data.loc[data.index == n, 'diet'].values) graph.nodes[n]['bmi'] = float(data.loc[data.index == n, 'bmi'].values) return graph
def vaccine_dgm(network, restricted=False, n_init_infect=7, time_limit=10, inf_duration=5): """ Parameters ---------- network: input network restricted: whether to use the restricted treatment assignment n_init_infect: number of initial infections to start with time_limit: maximum time to let the outbreak go through inf_duration: duration of infection status in time-steps """ graph = network.copy() data = network_to_df(graph) adj_matrix = nx.adjacency_matrix(graph, weight=None) data['A_sum'] = fast_exp_map(adj_matrix, np.array(data['A']), measure='sum') data['A_mean'] = fast_exp_map(adj_matrix, np.array(data['A']), measure='mean') data['H_mean'] = fast_exp_map(adj_matrix, np.array(data['H']), measure='mean') # Running Data Generating Mechanism for A pr_a = logistic.cdf(-1.9 + 1.75 * data['A'] + 0.95 * data['H'] + 1.2 * data['H_mean']) vaccine = np.random.binomial(n=1, p=pr_a, size=nx.number_of_nodes(graph)) data['vaccine'] = vaccine if restricted: # if we are in the restricted scenarios attrs = exposure_restrictions(network=network.graph['label'], exposure='vaccine') data.update( pd.DataFrame(list(attrs.values()), index=list(attrs.keys()), columns=['vaccine'])) # print("Pr(V):", np.mean(vaccine)) for n in graph.nodes(): graph.nodes[n]['vaccine'] = int(data.loc[data.index == n, 'vaccine'].values) # Running outbreak simulation graph = _outbreak_(graph, n_init_infect, duration=inf_duration, limit=time_limit) return graph
def naloxone_dgm_truth(network, pr_a, shift=False, restricted=False): graph = network.copy() data = network_to_df(graph) adj_matrix = nx.adjacency_matrix(graph, weight=None) data['O_sum'] = fast_exp_map(adj_matrix, np.array(data['O']), measure='sum') data['O_mean'] = fast_exp_map(adj_matrix, np.array(data['O']), measure='mean') data['G_sum'] = fast_exp_map(adj_matrix, np.array(data['G']), measure='sum') data['G_mean'] = fast_exp_map(adj_matrix, np.array(data['G']), measure='mean') # Running Data Generating Mechanism for A if shift: # If a shift in the Odds distribution is instead specified prob = logistic.cdf(-1.3 - 1.5 * data['P'] + 1.5 * data['P'] * data['G'] + 0.95 * data['O_mean'] + 0.95 * data['G_mean']) odds = probability_to_odds(prob) pr_a = odds_to_probability(np.exp(np.log(odds) + pr_a)) naloxone = np.random.binomial(n=1, p=pr_a, size=nx.number_of_nodes(graph)) data['naloxone'] = naloxone if restricted: # if we are in the restricted scenarios attrs = exposure_restrictions(network=network.graph['label'], exposure='naloxone') data.update( pd.DataFrame(list(attrs.values()), index=list(attrs.keys()), columns=['naloxone'])) exclude = list(attrs.keys()) # Creating network summary variables data['naloxone_sum'] = fast_exp_map(adj_matrix, np.array(data['naloxone']), measure='sum') # Running Data Generating Mechanism for Y pr_y = logistic.cdf(-1.1 - 0.2 * data['naloxone_sum'] + 1.7 * data['P'] - 0.9 * data['G'] + 0.75 * data['O_mean'] - 0.75 * data['G_mean']) overdose = np.random.binomial(n=1, p=pr_y, size=nx.number_of_nodes(graph)) if restricted: data['overdose'] = overdose data = data.loc[~data.index.isin(exclude)].copy() overdose = np.array(data['overdose']) return np.mean(overdose)
def diet_dgm_truth(network, pr_a, restricted=False, shift=False): graph = network.copy() data = network_to_df(graph) adj_matrix = nx.adjacency_matrix(graph, weight=None) data['B_mean_dist'] = fast_exp_map(adj_matrix, np.array(data['B']), measure='mean_dist') data['E_sum'] = fast_exp_map(adj_matrix, np.array(data['E']), measure='sum') data['E_mean'] = fast_exp_map(adj_matrix, np.array(data['E']), measure='mean') if shift: # If a shift in the Odds distribution is instead specified prob = logistic.cdf(-0.5 + 0.05 * (data['B'] - 30) + 0.25 * data['G'] * data['E'] + 0.05 * data['E_mean']) odds = probability_to_odds(prob) pr_a = odds_to_probability(np.exp(np.log(odds) + pr_a)) diet = np.random.binomial(n=1, p=pr_a, size=nx.number_of_nodes(graph)) data['diet'] = diet if restricted: # if we are in the restricted scenarios attrs = exposure_restrictions(network=network.graph['label'], exposure='diet') data.update( pd.DataFrame(list(attrs.values()), index=list(attrs.keys()), columns=['diet'])) exclude = list(attrs.keys()) # Running Data Generating Mechanism for Y data['diet_sum'] = fast_exp_map(adj_matrix, np.asarray(data['diet']), measure='sum') data['diet_t3'] = np.where(data['diet_sum'] > 3, 1, 0) bmi = (3 + data['B'] - 5 * data['diet'] - 5 * data['diet_t3'] + 3 * data['G'] - 3 * data['E'] - 0.5 * data['E_sum'] + data['B_mean_dist'] + np.random.normal(0, scale=1, size=nx.number_of_nodes(graph))) if restricted: data['bmi'] = bmi data = data.loc[~data.index.isin(exclude)].copy() bmi = np.array(data['bmi']) return np.mean(bmi)
def vaccine_dgm_truth(network, pr_a, shift=False, restricted=False, n_init_infect=7, time_limit=10, inf_duration=5): graph = network.copy() data = network_to_df(graph) # Running Data Generating Mechanism for A if shift: # If a shift in the Odds distribution is instead specified adj_matrix = nx.adjacency_matrix(graph, weight=None) data['A_sum'] = fast_exp_map(adj_matrix, np.array(data['A']), measure='sum') data['H_mean'] = fast_exp_map(adj_matrix, np.array(data['H']), measure='mean') prob = logistic.cdf(-1.9 + 1.75 * data['A'] + 0.95 * data['H'] + 1.2 * data['H_mean']) odds = probability_to_odds(prob) pr_a = odds_to_probability(np.exp(np.log(odds) + pr_a)) vaccine = np.random.binomial(n=1, p=pr_a, size=nx.number_of_nodes(graph)) data['vaccine'] = vaccine if restricted: # if we are in the restricted scenarios attrs = exposure_restrictions(network=network.graph['label'], exposure='vaccine') data.update( pd.DataFrame(list(attrs.values()), index=list(attrs.keys()), columns=['vaccine'])) for n in graph.nodes(): graph.nodes[n]['vaccine'] = int(data.loc[data.index == n, 'vaccine'].values) # Running Data Generating Mechanism for Y graph = _outbreak_(graph, n_init_infect, duration=inf_duration, limit=time_limit) dis = [] for nod, d in graph.nodes(data=True): dis.append(d['D']) return np.mean(dis)
def statin_dgm(network, restricted=False): """ Parameters ---------- network: input network restricted: whether to use the restricted treatment assignment """ graph = network.copy() data = network_to_df(graph) # Running Data Generating Mechanism for A pr_a = logistic.cdf(-5.3 + 0.2 * data['L'] + 0.15 * (data['A'] - 30) + 0.4 * np.where(data['R_1'] == 1, 1, 0) + 0.9 * np.where(data['R_2'] == 2, 1, 0) + 1.5 * np.where(data['R_3'] == 3, 1, 0)) statin = np.random.binomial(n=1, p=pr_a, size=nx.number_of_nodes(graph)) data['statin'] = statin if restricted: # if we are in the restricted scenarios attrs = exposure_restrictions(network=network.graph['label'], exposure='statin') data.update( pd.DataFrame(list(attrs.values()), index=list(attrs.keys()), columns=['statin'])) # Running Data Generating Mechanism for Y pr_y = logistic.cdf(-5.05 - 0.8 * data['statin'] + 0.37 * (np.sqrt(data['A'] - 39.9)) + 0.75 * data['R'] + 0.75 * data['L']) cvd = np.random.binomial(n=1, p=pr_y, size=nx.number_of_nodes(graph)) data['cvd'] = cvd # Adding node information back to graph for n in graph.nodes(): graph.nodes[n]['statin'] = int(data.loc[data.index == n, 'statin'].values) graph.nodes[n]['cvd'] = float(data.loc[data.index == n, 'cvd'].values) return graph
def naloxone_dgm(network, restricted=False): """ Parameters ---------- network: input network restricted: whether to use the restricted treatment assignment """ graph = network.copy() data = network_to_df(graph) adj_matrix = nx.adjacency_matrix(graph, weight=None) data['O_sum'] = fast_exp_map(adj_matrix, np.array(data['O']), measure='sum') data['O_mean'] = fast_exp_map(adj_matrix, np.array(data['O']), measure='mean') data['G_sum'] = fast_exp_map(adj_matrix, np.array(data['G']), measure='sum') data['G_mean'] = fast_exp_map(adj_matrix, np.array(data['G']), measure='mean') # Running Data Generating Mechanism for A pr_a = logistic.cdf(-1.3 - 1.5 * data['P'] + 1.5 * data['P'] * data['G'] + 0.95 * data['O_mean'] + 0.95 * data['G_mean']) naloxone = np.random.binomial(n=1, p=pr_a, size=nx.number_of_nodes(graph)) data[ 'naloxone'] = naloxone # https://www.sciencedirect.com/science/article/pii/S074054721730301X (30%) if restricted: # if we are in the restricted scenarios attrs = exposure_restrictions(network=network.graph['label'], exposure='naloxone') data.update( pd.DataFrame(list(attrs.values()), index=list(attrs.keys()), columns=['naloxone'])) data['naloxone_sum'] = fast_exp_map(adj_matrix, np.array(data['naloxone']), measure='sum') # Running Data Generating Mechanism for Y pr_y = logistic.cdf(-1.1 - 0.2 * data['naloxone_sum'] + 1.7 * data['P'] - 0.9 * data['G'] + 0.75 * data['O_mean'] - 0.75 * data['G_mean']) overdose = np.random.binomial(n=1, p=pr_y, size=nx.number_of_nodes(graph)) data[ 'overdose'] = overdose # https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832501/?report=classic (20%) # print(data[['naloxone', 'overdose']].describe()) # Adding node information back to graph for n in graph.nodes(): graph.nodes[n]['naloxone'] = int(data.loc[data.index == n, 'naloxone'].values) graph.nodes[n]['overdose'] = int(data.loc[data.index == n, 'overdose'].values) return graph