コード例 #1
0
ファイル: test_networks.py プロジェクト: sunlaobo/deepdecoder
    def mask_generator(x):
        mask = sequential([
            Dense(16),
            Reshape((1, 4, 4)),
            UpSampling2D((16, 16))
        ])(x)

        depth_map = sequential([
            Dense(16),
            Reshape((1, 4, 4)),
            UpSampling2D((4, 4))
        ])(x)
        return mask, depth_map
コード例 #2
0
ファイル: networks.py プロジェクト: sunlaobo/deepdecoder
def get_offset_back(inputs, nb_units):
    n = nb_units
    input = concat(inputs)
    back_feature_map = sequential([
        UpSampling2D(),  # 64x64
        conv(n, 3, 3),
        conv(n, 3, 3),
    ], ns='offset.back')(input)

    return back_feature_map, sequential([
        Convolution2D(1, 3, 3, border_mode='same'),
        LinearInBounds(-1, 1, clip=True),
    ], ns='offset.back_out')(back_feature_map)
コード例 #3
0
ファイル: networks.py プロジェクト: sunlaobo/deepdecoder
def get_decoder_model(
        input,
        nb_units,
        nb_output=NUM_MIDDLE_CELLS + NUM_CONFIGS,
        depth=1,
        dense=[]):
    def dense_bn(n):
        return [
            Dense(n),
            BatchNormalization(),
            Activation('relu')
        ]
    n = nb_units
    d = depth
    return sequential([
        conv(n, depth=d),
        MaxPooling2D(),  # 32x32
        conv(2*n, depth=d),
        MaxPooling2D(),  # 16x16
        conv(4*n, depth=d),
        MaxPooling2D(),  # 8x8
        conv(8*n, depth=d),
        MaxPooling2D(),  # 4x4
        conv(16*n, depth=d),
        Flatten(),
        [dense_bn(d) for d in dense],
        Dense(nb_output)
    ])(input)
コード例 #4
0
ファイル: networks.py プロジェクト: GALI472/deepdecoder
def mask_generator(input, nb_units=64, dense_factor=3, nb_dense_layers=2,
                   trainable=True):
    n = nb_units

    def conv(n):
        return [
            Convolution2D(n, 3, 3, border_mode='same', init='he_normal'),
            Activation('relu'),
        ]

    dense_layers = [
        Dense(dense_factor*nb_units, activation='relu')
        for _ in range(nb_dense_layers)]
    return sequential(dense_layers + [
        Dense(8*n*4*4),
        Activation('relu'),
        Reshape((8*n, 4, 4,)),
        UpSampling2D(),  # 8x8
        conv(4*n),
        conv(4*n),
        UpSampling2D(),  # 16x16
        conv(2*n),
        conv(2*n),
        UpSampling2D(),  # 32x32
        conv(n),
        UpSampling2D(),  # 64x64
        conv(n),
        Convolution2D(1, 3, 3, border_mode='same', init='he_normal'),
        Activation('linear'),
    ], ns='mask_gen', trainable=trainable)(input)
コード例 #5
0
ファイル: networks.py プロジェクト: sunlaobo/deepdecoder
def mask_blending_discriminator(x, n=32, conv_repeat=1,
                                dense=[],
                                out_activation='sigmoid'):
    def conv(n):
        layers = [
            Convolution2D(n, 3, 3, subsample=(2, 2), border_mode='same'),
            BatchNormalization(axis=1),
            LeakyReLU(0.2),
        ]

        return layers + [[
            Convolution2D(n, 3, 3, border_mode='same'),
            BatchNormalization(axis=1),
            LeakyReLU(0.2),
        ] for _ in range(conv_repeat-1)]

    def get_dense(nb):
        return [
            Dense(nb),
            BatchNormalization(axis=1),
            LeakyReLU(0.2),
        ]

    return sequential([
        Convolution2D(n, 5, 5, subsample=(2, 2), border_mode='same'),
        LeakyReLU(0.2),
        conv(2*n),
        conv(4*n),
        conv(8*n),
        Flatten(),
        [get_dense(nb) for nb in dense],
        Dense(1, activation=out_activation)
    ], ns='dis')(concat(x, axis=0, name='concat_fake_real'))
コード例 #6
0
def test_sequential_flatten():
    x = Input(shape=(20, ))
    seq = sequential([Dense(20), [Dense(10)], [[Dense(1)], Dense(1)]])
    out = seq(x)
    model = Model([x], [out])
    model.compile('adam', 'mse')
    model.predict_on_batch(np.random.sample((64, 20)))
コード例 #7
0
def get_offset_back(inputs, nb_units):
    n = nb_units
    input = concat(inputs)
    back_feature_map = sequential(
        [
            UpSampling2D(),  # 64x64
            conv(n, 3, 3),
            conv(n, 3, 3),
        ],
        ns='offset.back')(input)

    return back_feature_map, sequential([
        Convolution2D(1, 3, 3, border_mode='same'),
        LinearInBounds(-1, 1, clip=True),
    ],
                                        ns='offset.back_out')(back_feature_map)
コード例 #8
0
ファイル: networks.py プロジェクト: sunlaobo/deepdecoder
def get_mask_postprocess(inputs, nb_units):
    n = nb_units
    return sequential([
        conv(n, 3, 3),
        conv(n, 3, 3),
        Convolution2D(1, 5, 5, border_mode='same', init='normal'),
    ], ns='mask_post')(concat(inputs))
コード例 #9
0
ファイル: networks.py プロジェクト: sunlaobo/deepdecoder
def get_mask_weight_blending(inputs, min=0, max=2):
    input = concat(inputs)
    return sequential([
        Convolution2D(1, 3, 3),
        Flatten(),
        Dense(1),
        LinearInBounds(min, max, clip=True),
    ], ns='mask_weight_blending')(input)
コード例 #10
0
ファイル: networks.py プロジェクト: GALI472/deepdecoder
def get_mask_postprocess(inputs, nb_units):
    n = nb_units
    return sequential([
        conv(n, 3, 3),
        conv(n, 3, 3),
        Deconvolution2D(1, 5, 5, border_mode=(2, 2)),
        LinearInBounds(-1, 1, clip=True),
    ], ns='mask_post')(concat(inputs))
コード例 #11
0
def d():
    x = Input(shape=(input_size + output_size, nb_chars))
    d_realness = sequential([
        LSTM(100),
        Dense(1, activation='sigmoid'),
    ])(x)
    d = Model([x], [d_realness])
    return d
コード例 #12
0
ファイル: test_seqgan.py プロジェクト: berleon/seqgan
def d():
    x = Input(shape=(input_size + output_size, nb_chars))
    d_realness = sequential([
        LSTM(100),
        Dense(1, activation='sigmoid'),
    ])(x)
    d = Model([x], [d_realness])
    return d
コード例 #13
0
ファイル: networks.py プロジェクト: sunlaobo/deepdecoder
def get_offset_middle(inputs, nb_units):
    n = nb_units
    input = concat(inputs)
    return sequential([
        UpSampling2D(),  # 32x32
        conv(2*n, 3, 3),
        conv(2*n, 3, 3),
        conv(2*n, 3, 3),
    ], ns='offset.middle')(input)
コード例 #14
0
def simple_gan():
    z = Input(batch_shape=simple_gan_z_shape, name='z')
    generator = sequential([
        Dense(simple_gan_nb_z, activation='relu', name='g1'),
        Dense(simple_gan_nb_z, activation='relu', name='g2'),
        Dense(simple_gan_nb_out, activation='sigmoid', name='g3'),
    ])(z)

    fake = Input(batch_shape=simple_gan_real_shape, name='fake')
    real = Input(batch_shape=simple_gan_real_shape, name='real')

    discriminator = sequential([
        Dense(20, activation='relu', input_dim=2, name='d1'),
        Dense(1, activation='sigmoid', name='d2')
    ])(concat([fake, real], axis=0))
    return GAN(Container(z, generator),
               Container([fake, real],  gan_outputs(discriminator)),
               simple_gan_z_shape[1:], simple_gan_real_shape[1:])
コード例 #15
0
ファイル: test_seqgan.py プロジェクト: berleon/seqgan
def m():
    x = Input(shape=(input_size + output_size, nb_chars))
    m_realness = sequential([
        LSTM(14),
        Dense(1, activation='sigmoid'),
    ])(x)
    m = Model([x], [m_realness])
    m.compile(Adam(), 'mse')
    return m
コード例 #16
0
def m():
    x = Input(shape=(input_size + output_size, nb_chars))
    m_realness = sequential([
        LSTM(14),
        Dense(1, activation='sigmoid'),
    ])(x)
    m = Model([x], [m_realness])
    m.compile(Adam(), 'mse')
    return m
コード例 #17
0
def get_mask_postprocess(inputs, nb_units):
    n = nb_units
    return sequential([
        conv(n, 3, 3),
        conv(n, 3, 3),
        Deconvolution2D(1, 5, 5, border_mode=(2, 2)),
        LinearInBounds(-1, 1, clip=True),
    ],
                      ns='mask_post')(concat(inputs))
コード例 #18
0
def get_mask_weight_blending(inputs, min=0, max=2):
    input = concat(inputs)
    return sequential([
        Convolution2D(1, 3, 3),
        Flatten(),
        Dense(1),
        LinearInBounds(K.variable(min), K.variable(2), clip=True),
    ],
                      ns='mask_weight_blending')(input)
コード例 #19
0
ファイル: networks.py プロジェクト: sunlaobo/deepdecoder
def mask_generator(input, nb_units=64, dense_factor=3, nb_dense_layers=2,
                   depth=2,
                   nb_output_channels=1,
                   trainable=True):
    n = nb_units

    def conv(n, repeats=1):
        return [
            [
                Convolution2D(n, 3, 3, border_mode='same', init='he_normal'),
                Activation('relu')
            ] for _ in range(repeats)
        ]

    dense_layers = [
        Dense(dense_factor*nb_units, activation='relu')
        for _ in range(nb_dense_layers)]
    base = sequential(dense_layers + [
        Dense(8*n*4*4),
        Activation('relu'),
        Reshape((8*n, 4, 4,)),
        conv(8*n),
        UpSampling2D(),  # 8x8
        conv(4*n, depth),
        UpSampling2D(),  # 16x16
        conv(2*n),
    ], ns='mask_gen.base', trainable=trainable)(input)

    mask = sequential([
        conv(2*n, depth),
        UpSampling2D(),  # 32x32
        conv(n, 2),
        UpSampling2D(),  # 64x64
        conv(n, 1),
        Convolution2D(1, 3, 3, border_mode='same', init='he_normal'),
    ], ns='mask_gen.mask', trainable=trainable)(base)

    depth_map = sequential([
        conv(n // 2, depth - 1),
        Convolution2D(1, 3, 3, border_mode='same', init='he_normal'),
    ], ns='mask_gen.depth_map', trainable=trainable)(base)

    return mask, depth_map
コード例 #20
0
ファイル: networks.py プロジェクト: sunlaobo/deepdecoder
def mask_generator_extra(input, nb_units=64, nb_dense=[256, 1024], depth=2,
                         project_factor=1, filter_size=3):
    n = nb_units
    def conv(n, repeats=1):
        return [
            [
                Convolution2D(n, filter_size, filter_size,
                              border_mode='same', init='he_normal'),
                Activation('relu')
            ] for _ in range(repeats)
        ]

    dense_layers = []
    for nb in nb_dense:
        dense_layers.append(
            Dense(nb, init='he_normal', activation='relu')
        )
    base = sequential(dense_layers + [
        Dense(8*n*4*4*project_factor),
        Activation('relu'),
        Reshape((8*n*project_factor, 4, 4,)),
        conv(8*n, depth),
        UpSampling2D(),  # 8x8
        conv(4*n, depth),
        UpSampling2D(),  # 16x16
        conv(2*n),
    ], ns='mask_gen.base')(input)

    mask = sequential([
        conv(2*n, depth),
        UpSampling2D(),  # 32x32
        conv(n, depth),
        UpSampling2D(),  # 64x64
        conv(n, depth - 1),
        Convolution2D(1, 5, 5, border_mode='same', init='he_normal'),
    ], ns='mask_gen.mask')(base)

    depth_map = sequential([
        conv(n // 2, depth - 1),
        Convolution2D(1, 3, 3, border_mode='same', init='he_normal'),
    ], ns='mask_gen.depth_map')(base)

    return mask, depth_map
コード例 #21
0
def get_offset_middle(inputs, nb_units):
    n = nb_units
    input = concat(inputs)
    return sequential(
        [
            UpSampling2D(),  # 32x32
            conv(2 * n, 3, 3),
            conv(2 * n, 3, 3),
            conv(2 * n, 3, 3),
        ],
        ns='offset.middle')(input)
コード例 #22
0
ファイル: test_util.py プロジェクト: nebw/beras
def test_sequential():
    x = Input(shape=(20,))
    seq = sequential([
        Dense(20),
        Dense(10),
        Dense(1),
    ])

    out = seq(x)
    model = Model([x], [out])
    model.compile('adam', 'mse')
    model.predict_on_batch(np.random.sample((64, 20)))
コード例 #23
0
ファイル: networks.py プロジェクト: sunlaobo/deepdecoder
def mask_generator_all_conv(input, nb_units=64, depth=2, filter_size=3):
    n = nb_units
    def conv(n, repeats=1, f=None):
        if f is None:
            f = filter_size
        return [
            [
                Convolution2D(n, f, f, border_mode='same', init='he_normal'),
                Activation('relu')
            ] for _ in range(repeats)
        ]

    base = sequential([
        Reshape((22, 1, 1,)),
        conv(8*n, depth, f=1),
        UpSampling2D(),  # 2x2
        conv(8*n, depth, f=2),
        UpSampling2D(),  # 4x4
        conv(8*n, depth),
        UpSampling2D(),  # 8x8
        conv(4*n, depth),
        UpSampling2D(),  # 16x16
        conv(2*n),
    ], ns='mask_gen.base')(input)

    mask = sequential([
        conv(2*n, depth),
        UpSampling2D(),  # 32x32
        conv(n, depth),
        UpSampling2D(),  # 64x64
        conv(n, depth - 1),
        Convolution2D(1, 3, 3, border_mode='same', init='he_normal'),
    ], ns='mask_gen.mask')(base)

    depth_map = sequential([
        conv(n // 2, depth - 1),
        Convolution2D(1, 3, 3, border_mode='same', init='he_normal'),
    ], ns='mask_gen.depth_map')(base)

    return mask, depth_map
コード例 #24
0
def test_sequential_namespace():
    x = Input(shape=(20, ))
    dense1 = Dense(20)
    dense2 = Dense(10)
    dense3 = Dense(1)
    seq = sequential([
        dense1,
        dense2,
        dense3,
    ], ns='hello')
    seq(x)
    assert dense1.name.startswith('hello.')
    assert dense2.name.startswith('hello.')
    assert dense3.name.startswith('hello.')
コード例 #25
0
def test_sequential_enumerate():
    x = Input(shape=(20, ))
    dense1 = Dense(20)
    dense2 = Dense(10)
    dense3 = Dense(1)
    seq = sequential([
        dense1,
        dense2,
        dense3,
    ], ns='hello')
    seq(x)
    assert dense1.name.endswith('hello.00_dense')
    assert dense2.name.endswith('hello.01_dense')
    assert dense3.name.endswith('hello.02_dense')
コード例 #26
0
ファイル: test_seqgan.py プロジェクト: berleon/seqgan
def g():
    seq = Input(shape=(input_size, nb_chars))
    z = Input(shape=(z_size,))
    z_rep = RepeatVector(input_size)(z)
    seq_and_z = merge([seq, z_rep], mode='concat', concat_axis=-1)
    fake_prob = sequential([
        LSTM(8),
        RepeatVector(output_size),
        LSTM(8, return_sequences=True),
        TimeDistributed(Dense(nb_chars, activation='softmax')),
    ])(seq_and_z)

    g = Model([z, seq], [fake_prob])
    return g
コード例 #27
0
ファイル: test_util.py プロジェクト: nebw/beras
def test_sequential_trainable():
    x = Input(shape=(20,))
    dense1 = Dense(20)
    dense2 = Dense(10)
    dense3 = Dense(1)
    seq = sequential([
        dense1,
        dense2,
        dense3,
    ], trainable=False)
    seq(x)
    assert collect_trainable_weights(dense1) == []
    assert collect_trainable_weights(dense2) == []
    assert collect_trainable_weights(dense3) == []
コード例 #28
0
ファイル: test_util.py プロジェクト: nebw/beras
def test_sequential_namespace():
    x = Input(shape=(20,))
    dense1 = Dense(20)
    dense2 = Dense(10)
    dense3 = Dense(1)
    seq = sequential([
        dense1,
        dense2,
        dense3,
    ], ns='hello')
    seq(x)
    assert dense1.name.startswith('hello.')
    assert dense2.name.startswith('hello.')
    assert dense3.name.startswith('hello.')
コード例 #29
0
ファイル: test_util.py プロジェクト: nebw/beras
def test_sequential_enumerate():
    x = Input(shape=(20,))
    dense1 = Dense(20)
    dense2 = Dense(10)
    dense3 = Dense(1)
    seq = sequential([
        dense1,
        dense2,
        dense3,
    ], ns='hello')
    seq(x)
    assert dense1.name.endswith('hello.00_dense')
    assert dense2.name.endswith('hello.01_dense')
    assert dense3.name.endswith('hello.02_dense')
コード例 #30
0
def test_sequential_trainable():
    x = Input(shape=(20, ))
    dense1 = Dense(20)
    dense2 = Dense(10)
    dense3 = Dense(1)
    seq = sequential([
        dense1,
        dense2,
        dense3,
    ], trainable=False)
    seq(x)
    assert collect_trainable_weights(dense1) == []
    assert collect_trainable_weights(dense2) == []
    assert collect_trainable_weights(dense3) == []
コード例 #31
0
def g():
    seq = Input(shape=(input_size, nb_chars))
    z = Input(shape=(z_size, ))
    z_rep = RepeatVector(input_size)(z)
    seq_and_z = merge([seq, z_rep], mode='concat', concat_axis=-1)
    fake_prob = sequential([
        LSTM(8),
        RepeatVector(output_size),
        LSTM(8, return_sequences=True),
        TimeDistributed(Dense(nb_chars, activation='softmax')),
    ])(seq_and_z)

    g = Model([z, seq], [fake_prob])
    return g
コード例 #32
0
ファイル: networks.py プロジェクト: sunlaobo/deepdecoder
def get_offset_front(inputs, nb_units):
    n = nb_units
    input = concat(inputs)

    return sequential([
        Dense(8*n*4*4),
        BatchNormalization(),
        Activation('relu'),
        Reshape((8*n, 4, 4)),
        UpSampling2D(),  # 8x8
        conv(4*n, 3, 3),
        conv(4*n, 3, 3),
        UpSampling2D(),  # 16x16
        conv(2*n, 3, 3),
        conv(2*n, 3, 3),
    ], ns='offset.front')(input)
コード例 #33
0
ファイル: networks.py プロジェクト: sunlaobo/deepdecoder
def get_mask_driver(x, nb_units, nb_output_units):
    n = nb_units
    driver = sequential([
        Dense(n),
        BatchNormalization(),
        Dropout(0.25),
        Activation('relu'),
        Dense(n),
        BatchNormalization(),
        Dropout(0.25),
        Activation('relu'),
        Dense(nb_output_units),
        BatchNormalization(gamma_init=constant_init(0.25)),
        LinearInBounds(-1, 1, clip=True),
    ], ns='driver')
    return driver(x)
コード例 #34
0
ファイル: networks.py プロジェクト: GALI472/deepdecoder
def mask_blending_discriminator(x, n=32, out_activation='sigmoid'):
    def conv(n):
        return [
            Convolution2D(n, 5, 5, subsample=(2, 2), border_mode='same'),
            BatchNormalization(),
            LeakyReLU(0.2),
        ]

    return sequential([
        Convolution2D(n, 5, 5, subsample=(2, 2), border_mode='same'),
        LeakyReLU(0.2),
        conv(2*n),
        conv(4*n),
        conv(8*n),
        Flatten(),
        Dense(1, activation=out_activation)
    ], ns='dis')(concat(x, axis=0, name='concat_fake_real'))
コード例 #35
0
def get_mask_driver(x, nb_units, nb_output_units):
    n = nb_units
    driver = sequential([
        Dense(n),
        BatchNormalization(),
        Dropout(0.25),
        Activation('relu'),
        Dense(n),
        BatchNormalization(),
        Dropout(0.25),
        Activation('relu'),
        Dense(nb_output_units),
        BatchNormalization(),
        LinearInBounds(-1, 1),
    ],
                        ns='driver')
    return driver(x)
コード例 #36
0
def get_offset_front(inputs, nb_units):
    n = nb_units
    input = concat(inputs)

    return sequential(
        [
            Dense(8 * n * 4 * 4),
            BatchNormalization(),
            Activation('relu'),
            Reshape((8 * n, 4, 4)),
            UpSampling2D(),  # 8x8
            conv(4 * n, 3, 3),
            conv(4 * n, 3, 3),
            UpSampling2D(),  # 16x16
            conv(2 * n, 3, 3),
            conv(2 * n, 3, 3),
        ],
        ns='offset.front')(input)
コード例 #37
0
def mask_blending_discriminator(x, n=32, out_activation='sigmoid'):
    def conv(n):
        return [
            Convolution2D(n, 5, 5, subsample=(2, 2), border_mode='same'),
            BatchNormalization(),
            LeakyReLU(0.2),
        ]

    return sequential([
        Convolution2D(n, 5, 5, subsample=(2, 2), border_mode='same'),
        LeakyReLU(0.2),
        conv(2 * n),
        conv(4 * n),
        conv(8 * n),
        Flatten(),
        Dense(1, activation=out_activation)
    ],
                      ns='dis')(concat(x, axis=0, name='concat_fake_real'))
コード例 #38
0
ファイル: networks.py プロジェクト: sunlaobo/deepdecoder
def get_offset_merge_mask(input, nb_units, nb_conv_layers, poolings=None, ns=None):
    def conv_layers(units, pooling):
        layers = [Convolution2D(units, 3, 3, border_mode='same')]
        if pooling:
            layers.append(MaxPooling2D())
        layers.extend([
            BatchNormalization(axis=1),
            Activation('relu'),
        ])
        return layers

    if poolings is None:
        poolings = [False] * nb_conv_layers
    if type(nb_units) == int:
        nb_units = [nb_units] * nb_conv_layers
    layers = []
    for i, (units, pooling) in enumerate(zip(nb_units, poolings)):
        layers.extend(conv_layers(units, pooling))
    return sequential(layers, ns=ns)(input)
コード例 #39
0
ファイル: networks.py プロジェクト: GALI472/deepdecoder
def get_lighting_generator(inputs, nb_units):
    n = nb_units
    input = concat(inputs)
    light_conv = sequential([
        conv(n, 5, 5),
        conv(n, 5, 5),
        conv(n, 3, 3),
        UpSampling2D(),  # 32x32
        conv(n, 5, 5),
        Convolution2D(2, 1, 1, border_mode='same'),
        UpSampling2D(),  # 64x64
        LinearInBounds(-1, 1, clip=True),
        GaussianBlur(sigma=4),
    ], ns='lighting')(input)

    shift = Split(0, 1, axis=1)(light_conv)
    scale = Split(1, 2, axis=1)(light_conv)

    return shift, scale
コード例 #40
0
def mask_generator(input,
                   nb_units=64,
                   dense_factor=3,
                   nb_dense_layers=2,
                   trainable=True):
    n = nb_units

    def conv(n):
        return [
            Convolution2D(n, 3, 3, border_mode='same', init='he_normal'),
            Activation('relu'),
        ]

    dense_layers = [
        Dense(dense_factor * nb_units, activation='relu')
        for _ in range(nb_dense_layers)
    ]
    return sequential(
        dense_layers + [
            Dense(8 * n * 4 * 4),
            Activation('relu'),
            Reshape((
                8 * n,
                4,
                4,
            )),
            UpSampling2D(),  # 8x8
            conv(4 * n),
            conv(4 * n),
            UpSampling2D(),  # 16x16
            conv(2 * n),
            conv(2 * n),
            UpSampling2D(),  # 32x32
            conv(n),
            UpSampling2D(),  # 64x64
            conv(n),
            Convolution2D(1, 3, 3, border_mode='same', init='he_normal'),
            Activation('linear'),
        ],
        ns='mask_gen',
        trainable=trainable)(input)
コード例 #41
0
def get_lighting_generator(inputs, nb_units):
    n = nb_units
    input = concat(inputs)
    light_conv = sequential(
        [
            conv(n, 5, 5),
            conv(n, 5, 5),
            conv(n, 3, 3),
            UpSampling2D(),  # 32x32
            conv(n, 5, 5),
            Convolution2D(2, 1, 1, border_mode='same'),
            UpSampling2D(),  # 64x64
            LinearInBounds(-1, 1, clip=True),
            GaussianBlur(sigma=4),
        ],
        ns='lighting')(input)

    shift = Split(0, 1, axis=1)(light_conv)
    scale = Split(1, 2, axis=1)(light_conv)

    return shift, scale
コード例 #42
0
def get_offset_merge_mask(input,
                          nb_units,
                          nb_conv_layers,
                          poolings=None,
                          ns=None):
    def conv_layers(units, pooling):
        layers = [Convolution2D(units, 3, 3, border_mode='same')]
        if pooling:
            layers.append(MaxPooling2D())
        layers.extend([
            BatchNormalization(axis=1),
            Activation('relu'),
        ])
        return layers

    if poolings is None:
        poolings = [False] * nb_conv_layers
    if type(nb_units) == int:
        nb_units = [nb_units] * nb_conv_layers
    layers = []
    for i, (units, pooling) in enumerate(zip(nb_units, poolings)):
        layers.extend(conv_layers(units, pooling))
    return sequential(layers, ns=ns)(input)
コード例 #43
0
ファイル: test_networks.py プロジェクト: sunlaobo/deepdecoder
 def discriminator_fn(x):
     return gan_outputs(sequential([
         Flatten(),
         Dense(1),
     ])(concat(x)), fake_for_gen=(0, 10), fake_for_dis=(0, 10),
                        real=(10, 20))
コード例 #44
0
ファイル: test_networks.py プロジェクト: sunlaobo/deepdecoder
 def offset_front(x):
     return sequential([
         Dense(16),
         Reshape((1, 4, 4)),
         UpSampling2D((4, 4))
     ])(concat(x))
コード例 #45
0
ファイル: test_networks.py プロジェクト: sunlaobo/deepdecoder
 def offset_back(x):
     feature_map = sequential([
         UpSampling2D(),
     ])(concat(x))
     return feature_map, Convolution2D(1, 3, 3,
                                       border_mode='same')(feature_map)
コード例 #46
0
ファイル: test_networks.py プロジェクト: sunlaobo/deepdecoder
 def mask_post(x):
     return sequential([
         Convolution2D(1, 3, 3, border_mode='same')
     ])(concat(x))
コード例 #47
0
ファイル: test_networks.py プロジェクト: sunlaobo/deepdecoder
 def mask_weight_blending(x):
     return sequential([
         Flatten(),
         Dense(1),
     ])(x)