コード例 #1
0
class MTDNNModel(object):
    def __init__(self, opt, state_dict=None, num_train_step=-1):
        self.config = opt
        self.updates = state_dict[
            'updates'] if state_dict and 'updates' in state_dict else 0
        self.train_loss = AverageMeter()
        self.network = SANBertNetwork(opt)

        # pdb.set_trace()
        if state_dict:
            new_state = set(self.network.state_dict().keys())
            # change to a safer approach
            old_keys = [k for k in state_dict['state'].keys()]
            for k in old_keys:
                if k not in new_state:
                    print('deleting state:', k)
                    del state_dict['state'][k]
            for k, v in list(self.network.state_dict().items()):
                if k not in state_dict['state']:
                    print('adding missing state:', k)
                    state_dict['state'][k] = v
            # pdb.set_trace()
            self.network.load_state_dict(state_dict['state'])
        self.mnetwork = nn.DataParallel(
            self.network) if opt['multi_gpu_on'] else self.network
        self.total_param = sum([
            p.nelement() for p in self.network.parameters() if p.requires_grad
        ])

        no_decay = [
            'bias', 'gamma', 'beta', 'LayerNorm.bias', 'LayerNorm.weight'
        ]
        optimizer_parameters = [{
            'params': [
                p for n, p in self.network.named_parameters()
                if n not in no_decay
            ],
            'weight_decay_rate':
            0.01
        }, {
            'params':
            [p for n, p in self.network.named_parameters() if n in no_decay],
            'weight_decay_rate':
            0.0
        }]
        # note that adamax are modified based on the BERT code
        if opt['optimizer'] == 'sgd':
            self.optimizer = optim.SGD(optimizer_parameters,
                                       opt['learning_rate'],
                                       weight_decay=opt['weight_decay'])

        elif opt['optimizer'] == 'adamax':
            self.optimizer = Adamax(optimizer_parameters,
                                    opt['learning_rate'],
                                    warmup=opt['warmup'],
                                    t_total=num_train_step,
                                    max_grad_norm=opt['grad_clipping'],
                                    schedule=opt['warmup_schedule'])
            if opt.get('have_lr_scheduler', False):
                opt['have_lr_scheduler'] = False
        elif opt['optimizer'] == 'adadelta':
            self.optimizer = optim.Adadelta(optimizer_parameters,
                                            opt['learning_rate'],
                                            rho=0.95)
        elif opt['optimizer'] == 'adam':
            self.optimizer = Adam(optimizer_parameters,
                                  lr=opt['learning_rate'],
                                  warmup=opt['warmup'],
                                  t_total=num_train_step,
                                  max_grad_norm=opt['grad_clipping'],
                                  schedule=opt['warmup_schedule'])
            if opt.get('have_lr_scheduler', False):
                opt['have_lr_scheduler'] = False
        else:
            raise RuntimeError('Unsupported optimizer: %s' % opt['optimizer'])

        if state_dict and 'optimizer' in state_dict:
            self.optimizer.load_state_dict(state_dict['optimizer'])

        if opt.get('have_lr_scheduler', False):
            if opt.get('scheduler_type', 'rop') == 'rop':
                self.scheduler = ReduceLROnPlateau(self.optimizer,
                                                   mode='max',
                                                   factor=opt['lr_gamma'],
                                                   patience=3)
            elif opt.get('scheduler_type', 'rop') == 'exp':
                self.scheduler = ExponentialLR(self.optimizer,
                                               gamma=opt.get('lr_gamma', 0.95))
            else:
                milestones = [
                    int(step)
                    for step in opt.get('multi_step_lr', '10,20,30').split(',')
                ]
                self.scheduler = MultiStepLR(self.optimizer,
                                             milestones=milestones,
                                             gamma=opt.get('lr_gamma'))
        else:
            self.scheduler = None
        self.ema = None
        if opt['ema_opt'] > 0:
            self.ema = EMA(self.config['ema_gamma'], self.network)
        self.para_swapped = False

    def setup_ema(self):
        if self.config['ema_opt']:
            self.ema.setup()

    def update_ema(self):
        if self.config['ema_opt']:
            self.ema.update()

    def eval(self):
        if self.config['ema_opt']:
            self.ema.swap_parameters()
            self.para_swapped = True

    def train(self):
        if self.para_swapped:
            self.ema.swap_parameters()
            self.para_swapped = False

    def update(self, batch_meta, batch_data):
        self.network.train()
        labels = batch_data[batch_meta['label']]
        # print('data size:',batch_data[batch_meta['token_id']].size())
        if batch_meta['pairwise']:
            labels = labels.contiguous().view(-1,
                                              batch_meta['pairwise_size'])[:,
                                                                           0]
        if self.config['cuda']:
            y = Variable(labels.cuda(async=True), requires_grad=False)
        else:
            y = Variable(labels, requires_grad=False)
        task_id = batch_meta['task_id']
        task_type = batch_meta['task_type']
        inputs = batch_data[:batch_meta['input_len']]
        if len(inputs) == 3:
            inputs.append(None)
            inputs.append(None)
        inputs.append(task_id)
        # pdb.set_trace()
        logits = self.mnetwork(*inputs)
        if batch_meta['pairwise']:
            logits = logits.view(-1, batch_meta['pairwise_size'])

        # pdb.set_trace()
        if task_type > 0:
            if self.config['answer_relu']:
                logits = F.relu(logits)
            loss = F.mse_loss(logits.squeeze(1), y)
        else:
            loss = F.cross_entropy(logits, y)

        if self.config['mediqa_pairloss'] is not None and batch_meta[
                'dataset_name'] in mediqa_name_list:
            # print(logits)
            # print(batch_data[batch_meta['rank_label']].size())
            # input('ha')
            logits = logits.squeeze().view(-1, 2)
            # print(batch_data[batch_meta['rank_label']])
            rank_y = batch_data[batch_meta['rank_label']].view(-1, 2)
            # print(rank_y)
            if self.config['mediqa_pairloss'] == 'hinge':
                # print(logits)
                first_logit, second_logit = logits.split(1, dim=1)
                # print(first_logit,second_logit)
                # pdb.set_trace()
                rank_y = (2 * rank_y - 1).to(torch.float32)
                rank_y = rank_y[:, 0]
                pairwise_loss = F.margin_ranking_loss(
                    first_logit.squeeze(1),
                    second_logit.squeeze(1),
                    rank_y,
                    margin=self.config['hinge_lambda'])
            else:
                # pdb.set_trace()
                pairwise_loss = F.cross_entropy(logits, rank_y[:, 1])
            # print('pairwise_loss:',pairwise_loss,'mse loss:',loss)
            loss += pairwise_loss

        self.train_loss.update(loss.item(), logits.size(0))
        self.optimizer.zero_grad()

        loss.backward()
        if self.config['global_grad_clipping'] > 0:
            torch.nn.utils.clip_grad_norm_(self.network.parameters(),
                                           self.config['global_grad_clipping'])
        self.optimizer.step()
        self.updates += 1
        self.update_ema()

    def predict(self, batch_meta, batch_data):
        self.network.eval()
        task_id = batch_meta['task_id']
        task_type = batch_meta['task_type']
        inputs = batch_data[:batch_meta['input_len']]
        if len(inputs) == 3:
            inputs.append(None)
            inputs.append(None)
        inputs.append(task_id)
        score = self.mnetwork(*inputs)
        gold_label = batch_meta['label']
        if batch_meta['pairwise']:
            score = score.contiguous().view(-1, batch_meta['pairwise_size'])
            if task_type < 1:
                score = F.softmax(score, dim=1)
            score = score.data.cpu()
            score = score.numpy()
            predict = np.zeros(score.shape, dtype=int)
            if task_type < 1:
                positive = np.argmax(score, axis=1)
                for idx, pos in enumerate(positive):
                    predict[idx, pos] = 1
            predict = predict.reshape(-1).tolist()
            score = score.reshape(-1).tolist()
            return score, predict, batch_meta['true_label']
        else:
            if task_type < 1:
                score = F.softmax(score, dim=1)
                # pdb.set_trace()
            score = score.data.cpu()
            score = score.numpy()
            if task_type < 1:
                predict = np.argmax(score, axis=1).tolist()
            else:
                predict = np.greater(
                    score,
                    2.0 + self.config['mediqa_score_offset']).astype(int)
                gold_label = np.greater(
                    batch_meta['label'],
                    2.00001 + self.config['mediqa_score_offset']).astype(int)
                predict = predict.reshape(-1).tolist()
                gold_label = gold_label.reshape(-1).tolist()
                # print('predict:',predict,score)

            score = score.reshape(-1).tolist()

        return score, predict, gold_label

    def save(self, filename):
        network_state = dict([(k, v.cpu())
                              for k, v in self.network.state_dict().items()])
        ema_state = dict([
            (k, v.cpu()) for k, v in self.ema.model.state_dict().items()
        ]) if self.ema is not None else dict()
        params = {
            'state': network_state,
            'optimizer': self.optimizer.state_dict(),
            'ema': ema_state,
            'config': self.config,
        }
        torch.save(params, filename)
        logger.info('model saved to {}'.format(filename))

    def cuda(self):
        self.network.cuda()
        if self.config['ema_opt']:
            self.ema.cuda()
コード例 #2
0
def main(*_, **kwargs):
    use_cuda = torch.cuda.is_available() and kwargs["device"] >= 0
    device = torch.device("cuda:" +
                          str(kwargs["device"]) if use_cuda else "cpu")

    if use_cuda:
        torch.cuda.set_device(device)

    kwargs["use_cuda"] = use_cuda

    neptune.create_experiment(
        name="bert-span-parser",
        upload_source_files=[],
        params={
            k: str(v) if isinstance(v, bool) else v
            for k, v in kwargs.items()
        },
    )

    logger.info("Settings: {}", json.dumps(kwargs,
                                           indent=2,
                                           ensure_ascii=False))

    # For reproducibility
    os.environ["PYTHONHASHSEED"] = str(kwargs["seed"])
    random.seed(kwargs["seed"])
    np.random.seed(kwargs["seed"])
    torch.manual_seed(kwargs["seed"])
    torch.cuda.manual_seed_all(kwargs["seed"])
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

    # Prepare and load data
    tokenizer = BertTokenizer.from_pretrained(kwargs["bert_model"],
                                              do_lower_case=False)

    logger.info("Loading data...")

    train_treebank = load_trees(kwargs["train_file"])
    dev_treebank = load_trees(kwargs["dev_file"])
    test_treebank = load_trees(kwargs["test_file"])

    logger.info(
        "Loaded {:,} train, {:,} dev, and {:,} test examples!",
        len(train_treebank),
        len(dev_treebank),
        len(test_treebank),
    )

    logger.info("Preprocessing data...")

    train_parse = [tree.convert() for tree in train_treebank]
    train_sentences = [[(leaf.tag, leaf.word) for leaf in tree.leaves()]
                       for tree in train_parse]
    dev_sentences = [[(leaf.tag, leaf.word) for leaf in tree.leaves()]
                     for tree in dev_treebank]
    test_sentences = [[(leaf.tag, leaf.word) for leaf in tree.leaves()]
                      for tree in test_treebank]

    logger.info("Data preprocessed!")

    logger.info("Preparing data for training...")

    tags = []
    labels = []

    for tree in train_parse:
        nodes = [tree]
        while nodes:
            node = nodes.pop()
            if isinstance(node, InternalParseNode):
                labels.append(node.label)
                nodes.extend(reversed(node.children))
            else:
                tags.append(node.tag)

    tag_encoder = LabelEncoder()
    tag_encoder.fit(tags, reserved_labels=["[PAD]", "[UNK]"])

    label_encoder = LabelEncoder()
    label_encoder.fit(labels, reserved_labels=[()])

    logger.info("Data prepared!")

    # Settings
    num_train_optimization_steps = kwargs["num_epochs"] * (
        (len(train_parse) - 1) // kwargs["batch_size"] + 1)
    kwargs["batch_size"] //= kwargs["gradient_accumulation_steps"]

    logger.info("Creating dataloaders for training...")

    train_dataloader, train_features = create_dataloader(
        sentences=train_sentences,
        batch_size=kwargs["batch_size"],
        tag_encoder=tag_encoder,
        tokenizer=tokenizer,
        is_eval=False,
    )
    dev_dataloader, dev_features = create_dataloader(
        sentences=dev_sentences,
        batch_size=kwargs["batch_size"],
        tag_encoder=tag_encoder,
        tokenizer=tokenizer,
        is_eval=True,
    )
    test_dataloader, test_features = create_dataloader(
        sentences=test_sentences,
        batch_size=kwargs["batch_size"],
        tag_encoder=tag_encoder,
        tokenizer=tokenizer,
        is_eval=True,
    )

    logger.info("Dataloaders created!")

    # Initialize model
    model = ChartParser.from_pretrained(
        kwargs["bert_model"],
        tag_encoder=tag_encoder,
        label_encoder=label_encoder,
        lstm_layers=kwargs["lstm_layers"],
        lstm_dim=kwargs["lstm_dim"],
        tag_embedding_dim=kwargs["tag_embedding_dim"],
        label_hidden_dim=kwargs["label_hidden_dim"],
        dropout_prob=kwargs["dropout_prob"],
    )

    model.to(device)

    # Prepare optimizer
    param_optimizers = list(model.named_parameters())

    if kwargs["freeze_bert"]:
        for p in model.bert.parameters():
            p.requires_grad = False
        param_optimizers = [(n, p) for n, p in param_optimizers
                            if p.requires_grad]

    # Hack to remove pooler, which is not used thus it produce None grad that break apex
    param_optimizers = [n for n in param_optimizers if "pooler" not in n[0]]

    no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [
                p for n, p in param_optimizers
                if not any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            0.01,
        },
        {
            "params": [
                p for n, p in param_optimizers
                if any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            0.0,
        },
    ]

    optimizer = BertAdam(
        optimizer_grouped_parameters,
        lr=kwargs["learning_rate"],
        warmup=kwargs["warmup_proportion"],
        t_total=num_train_optimization_steps,
    )

    if kwargs["fp16"]:
        model, optimizer = amp.initialize(model, optimizer, opt_level="O1")

    pretrained_model_file = os.path.join(kwargs["output_dir"], MODEL_FILENAME)

    if kwargs["do_eval"]:
        assert os.path.isfile(
            pretrained_model_file), "Pretrained model file does not exist!"

        logger.info("Loading pretrained model from {}", pretrained_model_file)

        # Load model from file
        params = torch.load(pretrained_model_file, map_location=device)

        model.load_state_dict(params["model"])

        logger.info(
            "Loaded pretrained model (Epoch: {:,}, Fscore: {:.2f})",
            params["epoch"],
            params["fscore"],
        )

        eval_score = eval(
            model=model,
            eval_dataloader=test_dataloader,
            eval_features=test_features,
            eval_trees=test_treebank,
            eval_sentences=test_sentences,
            tag_encoder=tag_encoder,
            device=device,
        )

        neptune.send_metric("test_eval_precision", eval_score.precision())
        neptune.send_metric("test_eval_recall", eval_score.recall())
        neptune.send_metric("test_eval_fscore", eval_score.fscore())

        tqdm.write("Evaluation score: {}".format(str(eval_score)))
    else:
        # Training phase
        global_steps = 0
        start_epoch = 0
        best_dev_fscore = 0

        if kwargs["preload"] or kwargs["resume"]:
            assert os.path.isfile(
                pretrained_model_file), "Pretrained model file does not exist!"

            logger.info("Resuming model from {}", pretrained_model_file)

            # Load model from file
            params = torch.load(pretrained_model_file, map_location=device)

            model.load_state_dict(params["model"])

            if kwargs["resume"]:
                optimizer.load_state_dict(params["optimizer"])

                torch.cuda.set_rng_state_all([
                    state.cpu()
                    for state in params["torch_cuda_random_state_all"]
                ])
                torch.set_rng_state(params["torch_random_state"].cpu())
                np.random.set_state(params["np_random_state"])
                random.setstate(params["random_state"])

                global_steps = params["global_steps"]
                start_epoch = params["epoch"] + 1
                best_dev_fscore = params["fscore"]
        else:
            assert not os.path.isfile(
                pretrained_model_file
            ), "Please remove or move the pretrained model file to another place!"

        for epoch in trange(start_epoch, kwargs["num_epochs"], desc="Epoch"):
            model.train()

            train_loss = 0
            num_train_steps = 0

            for step, (indices, *_) in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                ids, attention_masks, tags, sections, trees, sentences = prepare_batch_input(
                    indices=indices,
                    features=train_features,
                    trees=train_parse,
                    sentences=train_sentences,
                    tag_encoder=tag_encoder,
                    device=device,
                )

                loss = model(
                    ids=ids,
                    attention_masks=attention_masks,
                    tags=tags,
                    sections=sections,
                    sentences=sentences,
                    gold_trees=trees,
                )

                if kwargs["gradient_accumulation_steps"] > 1:
                    loss /= kwargs["gradient_accumulation_steps"]

                if kwargs["fp16"]:
                    with amp.scale_loss(loss, optimizer) as scaled_loss:
                        scaled_loss.backward()
                else:
                    loss.backward()

                train_loss += loss.item()

                num_train_steps += 1

                if (step + 1) % kwargs["gradient_accumulation_steps"] == 0:
                    optimizer.step()
                    optimizer.zero_grad()
                    global_steps += 1

            # Write logs
            neptune.send_metric("train_loss", epoch,
                                train_loss / num_train_steps)
            neptune.send_metric("global_steps", epoch, global_steps)

            tqdm.write(
                "Epoch: {:,} - Train loss: {:.4f} - Global steps: {:,}".format(
                    epoch, train_loss / num_train_steps, global_steps))

            # Evaluate
            eval_score = eval(
                model=model,
                eval_dataloader=dev_dataloader,
                eval_features=dev_features,
                eval_trees=dev_treebank,
                eval_sentences=dev_sentences,
                tag_encoder=tag_encoder,
                device=device,
            )

            neptune.send_metric("eval_precision", epoch,
                                eval_score.precision())
            neptune.send_metric("eval_recall", epoch, eval_score.recall())
            neptune.send_metric("eval_fscore", epoch, eval_score.fscore())

            tqdm.write("Epoch: {:,} - Evaluation score: {}".format(
                epoch, str(eval_score)))

            # Save best model
            if eval_score.fscore() > best_dev_fscore:
                best_dev_fscore = eval_score.fscore()

                tqdm.write("** Saving model...")

                os.makedirs(kwargs["output_dir"], exist_ok=True)

                torch.save(
                    {
                        "epoch":
                        epoch,
                        "global_steps":
                        global_steps,
                        "fscore":
                        best_dev_fscore,
                        "random_state":
                        random.getstate(),
                        "np_random_state":
                        np.random.get_state(),
                        "torch_random_state":
                        torch.get_rng_state(),
                        "torch_cuda_random_state_all":
                        torch.cuda.get_rng_state_all(),
                        "optimizer":
                        optimizer.state_dict(),
                        "model": (model.module if hasattr(model, "module") else
                                  model).state_dict(),
                    },
                    pretrained_model_file,
                )

            tqdm.write(
                "** Best evaluation fscore: {:.2f}".format(best_dev_fscore))
コード例 #3
0
 best_acc = 0
 for epoch in range(args.epoch_num):
     ## Train
     model.train()
     t = trange(args.steps_per_epoch,
                desc='Epoch {} -Train'.format(epoch))
     loss_avg = utils.RunningAverage()
     train_iters = [iter(tmp) for tmp in train_bls
                    ]  # to use next and reset the iterator
     for i in t:
         task_id = train_task_ids[i]
         batch_data = next(train_iters[task_id])
         batch_data = tuple(tmp.to(args.device) for tmp in batch_data)
         loss = model(batch_data, task_id, True)
         loss.backward()
         optimizer.step()
         optimizer.zero_grad()
         loss_avg.update(loss.item())
         t.set_postfix(loss='{:5.4f}'.format(loss.item()),
                       avg_loss='{:5.4f}'.format(loss_avg()))
     acc = eval(model, ner_dev_data, dev_data, dev_bl, graph,
                entity_linking, args)
     utils.save_checkpoint(
         {
             'epoch': epoch + 1,
             'state_dict': model.state_dict(),
             'optim_dict': optimizer.state_dict()
         },
         is_best=acc > best_acc,
         checkpoint=args.model_dir)
     best_acc = max(best_acc, acc)
コード例 #4
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--device",
                        default=None,
                        type=str,
                        required=True,
                        help="The GPU device you will run on.")
    parser.add_argument(
        "--features_file",
        default=None,
        type=str,
        required=True,
        help=
        "The train features file. Should contain the .csv files (after tokenized) for the task."
        "Format: example_id,input_ids,input_mask,segment_ids,label\n")
    parser.add_argument(
        "--teacher_model",
        default=None,
        type=str,
        help=
        "The teacher model dir. Should contain the config/vocab/checkpoint file."
    )
    parser.add_argument(
        "--general_student_model",
        default=None,
        type=str,
        required=True,
        help="The student model (after general distillation) dir. "
        "Should contain the config/vocab/checkpoint file.")
    parser.add_argument(
        "--output_student_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory for the task-specific distilled student models.")
    parser.add_argument("--cache_file_dir",
                        default='./cache',
                        type=str,
                        required=True,
                        help="The directory where cache the features.")
    parser.add_argument(
        "--distill_model",
        default='simplified',
        type=str,
        help="The distill model type, choose in 'standard' and 'simplified'.")
    parser.add_argument(
        "--max_seq_length",
        default=256,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization."
    )
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=64,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--weight_decay',
                        '--wd',
                        default=1e-2,
                        type=float,
                        metavar='W',
                        help='weight decay')
    parser.add_argument("--num_train_epochs",
                        default=2,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--alpha",
        default=0.5,
        type=float,
        help="The weight of soft loss in standard kd method."
        "Only use when '--distill_model' is set as 'standard'.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="Random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--train_loss_step',
        type=int,
        default=1000,
        help="How many train step to record a training loss.  ")
    parser.add_argument('--save_model_step',
                        type=int,
                        default=3000,
                        help="How many train step to save a student model.")
    parser.add_argument('--temperature',
                        type=float,
                        default=1.,
                        help="The temperature in soft loss.")
    parser.add_argument(
        '--fp16',
        action='store_true',
        help=
        "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit."
    )
    parser.add_argument(
        '--fp16_opt_level',
        type=str,
        default='O1',
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html")

    args = parser.parse_args()
    logger.info('The args: {}'.format(args))

    # Prepare device
    os.environ["CUDA_VISIBLE_DEVICES"] = args.device
    device = torch.device(
        "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
    n_gpu = torch.cuda.device_count()
    logger.info("device: {} n_gpu: {}".format(device, n_gpu))

    # Prepare seed
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    # Prepare task settings
    if os.path.exists(args.output_student_dir) and os.listdir(
            args.output_student_dir):
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_student_dir))
    if not os.path.exists(args.output_student_dir):
        os.makedirs(args.output_student_dir)
    if not os.path.exists(args.cache_file_dir):
        os.makedirs(args.cache_file_dir)

    # For save vocab file for all output models.
    tokenizer = BertTokenizer.from_pretrained(args.general_student_model,
                                              do_lower_case=args.do_lower_case)

    # Model
    teacher_model = TinyBertForSequenceClassification.from_pretrained(
        args.teacher_model, num_labels=2)
    if args.fp16:
        teacher_model.half()
    teacher_model.to(device)

    student_model = TinyBertForSequenceClassification.from_pretrained(
        args.general_student_model, num_labels=2)
    student_model.to(device)

    # Train Config
    num_examples, train_dataloader = distill_dataloader(
        args, RandomSampler, batch_size=args.train_batch_size)

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    num_train_optimization_steps = int(
        num_examples / args.train_batch_size /
        args.gradient_accumulation_steps) * args.num_train_epochs

    logger.info("***** Running Distilling *****")
    logger.info("  Num examples = %d", num_examples)
    logger.info("  Batch size = %d", args.train_batch_size)
    logger.info("  Num steps = %d", num_train_optimization_steps)

    # Prepare optimizer
    param_optimizer = list(student_model.named_parameters())
    size = 0
    for n, p in student_model.named_parameters():
        logger.info('n: {}'.format(n))
        size += p.nelement()

    logger.info('Total parameters of student_model: {}'.format(size))
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        args.weight_decay
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    schedule = 'warmup_linear'
    optimizer = BertAdam(optimizer_grouped_parameters,
                         schedule=schedule,
                         lr=args.learning_rate,
                         warmup=args.warmup_proportion,
                         t_total=num_train_optimization_steps)
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        student_model, optimizer = amp.initialize(
            student_model, optimizer, opt_level=args.fp16_opt_level)
        logger.info('FP16 is activated, use amp')
    else:
        logger.info('FP16 is not activated, only use BertAdam')

    if n_gpu > 1:
        student_model = torch.nn.DataParallel(student_model)
        teacher_model = torch.nn.DataParallel(teacher_model)

    # Prepare loss functions
    loss_mse = MSELoss()

    def soft_cross_entropy(predicts, targets):
        student_likelihood = torch.nn.functional.log_softmax(predicts, dim=-1)
        targets_prob = torch.nn.functional.softmax(targets, dim=-1)
        return (-targets_prob * student_likelihood).mean()

    # Train
    global_step = 0
    output_loss_file = os.path.join(args.output_student_dir, "train_loss.txt")
    tr_loss = 0.
    tr_att_loss = 0.
    tr_rep_loss = 0.
    tr_cls_loss = 0.

    for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
        student_model.train()

        for step, batch in enumerate(
                tqdm(train_dataloader, desc="Iteration", ascii=True)):
            batch = tuple(t.to(device) for t in batch)

            input_ids, input_mask, segment_ids, label_ids = batch
            if input_ids.size()[0] != args.train_batch_size:
                continue

            student_logits, student_atts, student_reps = student_model(
                input_ids, segment_ids, input_mask, is_student=True)
            with torch.no_grad():
                teacher_logits, teacher_atts, teacher_reps = teacher_model(
                    input_ids, segment_ids, input_mask)

            soft_loss = soft_cross_entropy(student_logits / args.temperature,
                                           teacher_logits / args.temperature)
            hard_loss = torch.nn.functional.cross_entropy(student_logits,
                                                          label_ids,
                                                          reduction='mean')

            if args.distill_model == 'standard':
                cls_loss = args.alpha * soft_loss + (1 -
                                                     args.alpha) * hard_loss
                tr_cls_loss += cls_loss.item()
                loss = cls_loss
            elif args.distill_model == 'simplified':
                teacher_layer_num = len(teacher_atts)
                student_layer_num = len(student_atts)
                assert teacher_layer_num % student_layer_num == 0
                layers_per_block = int(teacher_layer_num / student_layer_num)
                new_teacher_atts = [
                    teacher_atts[i * layers_per_block + layers_per_block - 1]
                    for i in range(student_layer_num)
                ]
                att_loss = 0.
                rep_loss = 0.
                # attention loss
                for student_att, teacher_att in zip(student_atts,
                                                    new_teacher_atts):
                    student_att = torch.where(
                        student_att <= -1e2,
                        torch.zeros_like(student_att).to(device), student_att)
                    teacher_att = torch.where(
                        teacher_att <= -1e2,
                        torch.zeros_like(teacher_att).to(device), teacher_att)
                    tmp_loss = loss_mse(student_att, teacher_att)
                    att_loss += tmp_loss

                # hidden states loss
                new_teacher_reps = [
                    teacher_reps[i * layers_per_block]
                    for i in range(student_layer_num + 1)
                ]
                new_student_reps = student_reps
                for student_rep, teacher_rep in zip(new_student_reps,
                                                    new_teacher_reps):
                    tmp_loss = loss_mse(student_rep, teacher_rep)
                    rep_loss += tmp_loss

                tr_att_loss += att_loss.item()
                tr_rep_loss += rep_loss.item()

                # classification loss
                cls_loss = soft_loss + hard_loss
                tr_cls_loss += cls_loss.item()

                # total loss
                loss = rep_loss + att_loss + cls_loss
            else:
                raise NotImplementedError

            if n_gpu > 1:
                loss = loss.mean()  # mean() to average on multi-gpu.
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()

            if (step + 1) % args.gradient_accumulation_steps == 0:
                optimizer.step()
                optimizer.zero_grad()
                global_step += 1

            if global_step % args.train_loss_step == 0:
                loss = tr_loss / args.train_loss_step
                cls_loss = tr_cls_loss / args.train_loss_step
                att_loss = tr_att_loss / args.train_loss_step
                rep_loss = tr_rep_loss / args.train_loss_step

                loss_dict = {}
                loss_dict['global_step'] = global_step
                loss_dict['cls_loss'] = cls_loss
                loss_dict['att_loss'] = att_loss
                loss_dict['rep_loss'] = rep_loss
                loss_dict['loss'] = loss

                write_loss_to_file(loss_dict, output_loss_file)

                tr_loss = 0.
                tr_att_loss = 0.
                tr_rep_loss = 0.
                tr_cls_loss = 0.

            if global_step % args.save_model_step == 0:
                logger.info("***** Save model *****")

                model_to_save = student_model.module if hasattr(
                    student_model, 'module') else student_model
                model_name = WEIGHTS_NAME
                checkpoint_name = 'checkpoint-' + str(global_step)
                output_model_dir = os.path.join(args.output_dir,
                                                checkpoint_name)
                if not os.path.exists(output_model_dir):
                    os.makedirs(output_model_dir)
                output_model_file = os.path.join(output_model_dir, model_name)
                output_config_file = os.path.join(output_model_dir,
                                                  CONFIG_NAME)

                torch.save(model_to_save.state_dict(), output_model_file)
                model_to_save.config.to_json_file(output_config_file)
                tokenizer.save_vocabulary(output_model_dir)

    if os.path.exists(args.cache_file_dir):
        import shutil
        shutil.rmtree(args.cache_file_dir)