コード例 #1
0
    def call(self, inputs):
        """如果是条件Layer Norm,则默认以list为输入,第二个是condition
        """
        if self.conditional:
            inputs, cond = inputs
            if self.hidden_units is not None:
                cond = self.hidden_dense(cond)
            for _ in range(K.ndim(inputs) - K.ndim(cond)):
                cond = K.expand_dims(cond, 1)
            if self.center:
                beta = self.beta_dense(cond) + self.beta
            if self.scale:
                gamma = self.gamma_dense(cond) + self.gamma
        else:
            if self.center:
                beta = self.beta
            if self.scale:
                gamma = self.gamma

        outputs = inputs
        if self.center:
            mean = K.mean(outputs, axis=-1, keepdims=True)
            outputs = outputs - mean
        if self.scale:
            variance = K.mean(K.square(outputs), axis=-1, keepdims=True)
            std = K.sqrt(variance + self.epsilon)
            outputs = outputs / std
            outputs = outputs * gamma
        if self.center:
            outputs = outputs + beta

        return outputs
コード例 #2
0
 def sparse_accuracy(self, y_true, y_pred):
     """训练过程中显示逐帧准确率的函数,排除了mask的影响
     此处y_true需要是整数形式(非one hot)
     """
     # 导出mask并转换数据类型
     if self.input_mask is None:
         mask = None
     else:
         mask = K.cast(self.input_mask, K.floatx())
     # y_true需要重新明确一下shape和dtype
     y_true = K.reshape(y_true, K.shape(y_pred)[:-1])
     y_true = K.cast(y_true, 'int32')
     # 逐标签取最大来粗略评测训练效果
     y_pred = K.cast(K.argmax(y_pred, 2), 'int32')
     isequal = K.cast(K.equal(y_true, y_pred), K.floatx())
     if mask is None:
         return K.mean(isequal)
     else:
         return K.sum(isequal * mask) / K.sum(mask)
コード例 #3
0
 def basic_accuracy(self, y_true, y_pred, go_backwards=False):
     """训练过程中显示逐帧准确率的函数,排除了mask的影响
     此处y_true需要是整数形式(非one hot)
     """
     # 导出mask并转换数据类型
     if self.input_mask is None:
         mask = None
     else:
         mask = K.cast(self.input_mask, K.floatx())
     # y_true需要重新明确一下shape和dtype
     y_true = K.reshape(y_true, K.shape(y_pred)[:-1])
     y_true = K.cast(y_true, 'int32')
     # 反转相关
     if self.hidden_dim is None:
         if go_backwards:  # 是否反转序列
             y_true, y_pred = self.reverse_sequence([y_true, y_pred], mask)
             trans = K.transpose(self.trans)
         else:
             trans = self.trans
         histoty = K.gather(trans, y_true)
     else:
         if go_backwards:  # 是否反转序列
             y_true, y_pred = self.reverse_sequence([y_true, y_pred], mask)
             r_trans, l_trans = self.l_trans, self.r_trans
         else:
             l_trans, r_trans = self.l_trans, self.r_trans
         histoty = K.gather(l_trans, y_true)
         histoty = tf.einsum('bnd,kd->bnk', histoty, r_trans)
     # 计算逐标签accuracy
     histoty = K.concatenate([y_pred[:, :1], histoty[:, :-1]], 1)
     y_pred = (y_pred + histoty) / 2
     y_pred = K.cast(K.argmax(y_pred, 2), 'int32')
     isequal = K.cast(K.equal(y_true, y_pred), K.floatx())
     if mask is None:
         return K.mean(isequal)
     else:
         return K.sum(isequal * mask) / K.sum(mask)
コード例 #4
0
 def basic_loss(self, y_true, y_pred, go_backwards=False):
     """y_true需要是整数形式(非one hot)
     """
     # 导出mask并转换数据类型
     if self.input_mask is None:
         mask = None
     else:
         mask = K.cast(self.input_mask, K.floatx())
     # y_true需要重新明确一下shape和dtype
     y_true = K.reshape(y_true, K.shape(y_pred)[:-1])
     y_true = K.cast(y_true, 'int32')
     # 反转相关
     if self.hidden_dim is None:
         if go_backwards:  # 是否反转序列
             y_true, y_pred = self.reverse_sequence([y_true, y_pred], mask)
             trans = K.transpose(self.trans)
         else:
             trans = self.trans
         histoty = K.gather(trans, y_true)
     else:
         if go_backwards:  # 是否反转序列
             y_true, y_pred = self.reverse_sequence([y_true, y_pred], mask)
             r_trans, l_trans = self.l_trans, self.r_trans
         else:
             l_trans, r_trans = self.l_trans, self.r_trans
         histoty = K.gather(l_trans, y_true)
         histoty = tf.einsum('bnd,kd->bnk', histoty, r_trans)
     # 计算loss
     histoty = K.concatenate([y_pred[:, :1], histoty[:, :-1]], 1)
     y_pred = (y_pred + histoty) / 2
     loss = K.sparse_categorical_crossentropy(y_true,
                                              y_pred,
                                              from_logits=True)
     if mask is None:
         return K.mean(loss)
     else:
         return K.sum(loss * mask) / K.sum(mask)