def get_parser(desc, default_task='translation'): # Before creating the true parser, we need to import optional user module # in order to eagerly import custom tasks, optimizers, architectures, etc. usr_parser = argparse.ArgumentParser(add_help=False, allow_abbrev=False) usr_parser.add_argument('--user-dir', default=None) usr_args, _ = usr_parser.parse_known_args() utils.import_user_module(usr_args) parser = argparse.ArgumentParser(allow_abbrev=False) # fmt: off parser.add_argument('--no-progress-bar', action='store_true', help='disable progress bar') parser.add_argument('--log-interval', type=int, default=1000, metavar='N', help='log progress every N batches (when progress bar is disabled)') parser.add_argument('--log-format', default=None, help='log format to use', choices=['json', 'none', 'simple', 'tqdm']) parser.add_argument('--tensorboard-logdir', metavar='DIR', default='', help='path to save logs for tensorboard, should match --logdir ' 'of running tensorboard (default: no tensorboard logging)') parser.add_argument("--tbmf-wrapper", action="store_true", help="[FB only] ") parser.add_argument('--seed', default=1, type=int, metavar='N', help='pseudo random number generator seed') parser.add_argument('--cpu', action='store_true', help='use CPU instead of CUDA') parser.add_argument('--fp16', action='store_true', help='use FP16') parser.add_argument('--memory-efficient-fp16', action='store_true', help='use a memory-efficient version of FP16 training; implies --fp16') parser.add_argument('--fp16-init-scale', default=2 ** 7, type=int, help='default FP16 loss scale') parser.add_argument('--fp16-scale-window', type=int, help='number of updates before increasing loss scale') parser.add_argument('--fp16-scale-tolerance', default=0.0, type=float, help='pct of updates that can overflow before decreasing the loss scale') parser.add_argument('--min-loss-scale', default=1e-4, type=float, metavar='D', help='minimum FP16 loss scale, after which training is stopped') parser.add_argument('--threshold-loss-scale', type=float, help='threshold FP16 loss scale from below') parser.add_argument('--user-dir', default=None, help='path to a python module containing custom extensions (tasks and/or architectures)') from bert_serving.server.page.fairseq.registry import REGISTRIES for registry_name, REGISTRY in REGISTRIES.items(): print("registry_name",registry_name) parser.add_argument( '--' + registry_name.replace('_', '-'), default=REGISTRY['default'], choices=REGISTRY['registry'].keys(), ) # Task definitions can be found under fairseq/tasks/ from bert_serving.server.page.fairseq.tasks import TASK_REGISTRY print("TASK_REGISTRY.keys:",TASK_REGISTRY.keys()) parser.add_argument('--task', metavar='TASK', default=default_task, choices=TASK_REGISTRY.keys(), help='task') # fmt: on return parser
def main(args): utils.import_user_module(args) if args.buffer_size < 1: args.buffer_size = 1 if args.max_tokens is None and args.max_sentences is None: args.max_sentences = 1 assert not args.sampling or args.nbest == args.beam, \ '--sampling requires --nbest to be equal to --beam' assert not args.max_sentences or args.max_sentences <= args.buffer_size, \ '--max-sentences/--batch-size cannot be larger than --buffer-size' print(args) use_cuda = torch.cuda.is_available() and not args.cpu # Setup task, e.g., translation task = tasks.setup_task(args) # Load ensemble print('| loading model(s) from {}'.format(args.path)) models, _model_args = checkpoint_utils.load_model_ensemble( args.path.split(':'), arg_overrides=eval(args.model_overrides), task=task, ) # Set dictionaries src_dict = task.source_dictionary tgt_dict = task.target_dictionary # Optimize ensemble for generation for model in models: model.make_generation_fast_( beamable_mm_beam_size=None if args.no_beamable_mm else args.beam, need_attn=args.print_alignment, ) if args.fp16: model.half() if use_cuda: model.cuda() # Initialize generator generator = task.build_generator(args) # Handle tokenization and BPE tokenizer = encoders.build_tokenizer(args) bpe = encoders.build_bpe(args) def encode_fn(x): if tokenizer is not None: x = tokenizer.encode(x) if bpe is not None: x = bpe.encode(x) return x def decode_fn(x): if bpe is not None: x = bpe.decode(x) if tokenizer is not None: x = tokenizer.decode(x) return x # Load alignment dictionary for unknown word replacement # (None if no unknown word replacement, empty if no path to align dictionary) align_dict = utils.load_align_dict(args.replace_unk) max_positions = utils.resolve_max_positions( task.max_positions(), *[model.max_positions() for model in models] ) if args.buffer_size > 1: print('| Sentence buffer size:', args.buffer_size) print('| Type the input sentence and press return:') start_id = 0 for inputs in buffered_read(args.input, args.buffer_size): results = [] for batch in make_batches(inputs, args, task, max_positions, encode_fn): src_tokens = batch.src_tokens src_lengths = batch.src_lengths if use_cuda: src_tokens = src_tokens.cuda() src_lengths = src_lengths.cuda() sample = { 'net_input': { 'src_tokens': src_tokens, 'src_lengths': src_lengths, }, } translations = task.inference_step(generator, models, sample) for i, (id, hypos) in enumerate(zip(batch.ids.tolist(), translations)): src_tokens_i = utils.strip_pad(src_tokens[i], tgt_dict.pad()) results.append((start_id + id, src_tokens_i, hypos)) # sort output to match input order for id, src_tokens, hypos in sorted(results, key=lambda x: x[0]): if src_dict is not None: src_str = src_dict.string(src_tokens, args.remove_bpe) print('S-{}\t{}'.format(id, src_str)) # Process top predictions print("nbest:",args.nbest) print("len(hypos)",len(hypos)) for hypo in hypos[:min(len(hypos), args.nbest)]: hypo_tokens, hypo_str, alignment = utils.post_process_prediction( hypo_tokens=hypo['tokens'].int().cpu(), src_str=src_str, alignment=hypo['alignment'].int().cpu() if hypo['alignment'] is not None else None, align_dict=align_dict, tgt_dict=tgt_dict, remove_bpe=args.remove_bpe, ) hypo_str = decode_fn(hypo_str) print('H-{}\t{}\t{}'.format(id, hypo['score'], hypo_str)) print('P-{}\t{}'.format( id, ' '.join(map(lambda x: '{:.4f}'.format(x), hypo['positional_scores'].tolist())) )) if args.print_alignment: print('A-{}\t{}'.format( id, ' '.join(map(lambda x: str(utils.item(x)), alignment)) )) # update running id counter start_id += len(inputs)
def main(parsed_args): assert parsed_args.path is not None, '--path required for evaluation!' utils.import_user_module(parsed_args) print(parsed_args) use_cuda = torch.cuda.is_available() and not parsed_args.cpu task = tasks.setup_task(parsed_args) # Load ensemble print('| loading model(s) from {}'.format(parsed_args.path)) models, args = checkpoint_utils.load_model_ensemble( parsed_args.path.split(':'), arg_overrides=eval(parsed_args.model_overrides), task=task, ) for arg in vars(parsed_args).keys(): if arg not in { 'self_target', 'future_target', 'past_target', 'tokens_per_sample', 'output_size_dictionary', 'add_bos_token', }: setattr(args, arg, getattr(parsed_args, arg)) # reduce tokens per sample by the required context window size args.tokens_per_sample -= args.context_window task = tasks.setup_task(args) # Load dataset splits task.load_dataset(args.gen_subset) dataset = task.dataset(args.gen_subset) if args.context_window > 0: dataset = LMContextWindowDataset( dataset=dataset, tokens_per_sample=args.tokens_per_sample, context_window=args.context_window, pad_idx=task.source_dictionary.pad(), ) print('| {} {} {} examples'.format(args.data, args.gen_subset, len(dataset))) # Optimize ensemble for generation and set the source and dest dicts on the model (required by scorer) for model in models: model.make_generation_fast_() if args.fp16: model.half() if use_cuda: model.cuda() assert len(models) > 0 print('num. model params: {}'.format(sum(p.numel() for p in models[0].parameters()))) itr = task.get_batch_iterator( dataset=dataset, max_tokens=args.max_tokens or 36000, max_sentences=args.max_sentences, max_positions=utils.resolve_max_positions(*[ model.max_positions() for model in models ]), ignore_invalid_inputs=True, num_shards=args.num_shards, shard_id=args.shard_id, num_workers=args.num_workers, ).next_epoch_itr(shuffle=False) gen_timer = StopwatchMeter() scorer = SequenceScorer(task.target_dictionary, args.softmax_batch) score_sum = 0. count = 0 if args.remove_bpe is not None: if args.remove_bpe == 'sentencepiece': raise NotImplementedError else: bpe_cont = args.remove_bpe.rstrip() bpe_toks = set( i for i in range(len(task.source_dictionary)) if task.source_dictionary[i].endswith(bpe_cont) ) bpe_len = len(bpe_cont) else: bpe_toks = None bpe_len = 0 word_stats = dict() with progress_bar.build_progress_bar(args, itr) as t: wps_meter = TimeMeter() for sample in t: if 'net_input' not in sample: continue sample = utils.move_to_cuda(sample) if use_cuda else sample gen_timer.start() hypos = scorer.generate(models, sample) gen_timer.stop(sample['ntokens']) for hypos_i in hypos: hypo = hypos_i[0] tokens = hypo['tokens'] tgt_len = tokens.numel() pos_scores = hypo['positional_scores'].float() if args.add_bos_token: assert hypo['tokens'][0].item() == task.target_dictionary.bos() tokens = tokens[1:] pos_scores = pos_scores[1:] skipped_toks = 0 if bpe_toks is not None: for i in range(tgt_len - 1): if tokens[i].item() in bpe_toks: skipped_toks += 1 pos_scores[i + 1] += pos_scores[i] pos_scores[i] = 0 inf_scores = pos_scores.eq(float('inf')) | pos_scores.eq(float('-inf')) if inf_scores.any(): print('| Skipping tokens with inf scores:', task.target_dictionary.string(tokens[inf_scores.nonzero()])) pos_scores = pos_scores[(~inf_scores).nonzero()] score_sum += pos_scores.sum().cpu() count += pos_scores.numel() - skipped_toks if args.output_word_probs or args.output_word_stats: w = '' word_prob = [] is_bpe = False for i in range(len(tokens)): w_ind = tokens[i].item() w += task.source_dictionary[w_ind] if bpe_toks is not None and w_ind in bpe_toks: w = w[:-bpe_len] is_bpe = True else: word_prob.append((w, pos_scores[i].item())) next_prob = None ind = i + 1 while ind < len(tokens): if pos_scores[ind].item() != 0: next_prob = pos_scores[ind] break ind += 1 word_stats.setdefault(w, WordStat(w, is_bpe)).add(pos_scores[i].item(), next_prob) is_bpe = False w = '' if args.output_word_probs: print('\t'.join('{} [{:2f}]'.format(x[0], x[1]) for x in word_prob)) wps_meter.update(sample['ntokens']) t.log({'wps': round(wps_meter.avg)}) avg_nll_loss = -score_sum / count print('| Evaluated {} tokens in {:.1f}s ({:.2f} tokens/s)'.format(gen_timer.n, gen_timer.sum, 1. / gen_timer.avg)) print('| Loss: {:.4f}, Perplexity: {:.2f}'.format(avg_nll_loss, np.exp(avg_nll_loss))) if args.output_word_stats: for ws in sorted(word_stats.values(), key=lambda x: x.count, reverse=True): print(ws)
def main(args, init_distributed=False): utils.import_user_module(args) assert args.max_tokens is not None or args.max_sentences is not None, \ 'Must specify batch size either with --max-tokens or --max-sentences' # Initialize CUDA and distributed training if torch.cuda.is_available() and not args.cpu: torch.cuda.set_device(args.device_id) torch.manual_seed(args.seed) if init_distributed: args.distributed_rank = distributed_utils.distributed_init(args) if distributed_utils.is_master(args): checkpoint_utils.verify_checkpoint_directory(args.save_dir) # Print args print(args) # Setup task, e.g., translation, language modeling, etc. task = tasks.setup_task(args) # Load valid dataset (we load training data below, based on the latest checkpoint) for valid_sub_split in args.valid_subset.split(','): task.load_dataset(valid_sub_split, combine=False, epoch=0) # Build model and criterion model = task.build_model(args) criterion = task.build_criterion(args) print(model) print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__)) print('| num. model params: {} (num. trained: {})'.format( sum(p.numel() for p in model.parameters()), sum(p.numel() for p in model.parameters() if p.requires_grad), )) # Build trainer trainer = Trainer(args, task, model, criterion) print('| training on {} GPUs'.format(args.distributed_world_size)) print('| max tokens per GPU = {} and max sentences per GPU = {}'.format( args.max_tokens, args.max_sentences, )) # Load the latest checkpoint if one is available and restore the # corresponding train iterator extra_state, epoch_itr = checkpoint_utils.load_checkpoint(args, trainer) # Train until the learning rate gets too small max_epoch = args.max_epoch or math.inf max_update = args.max_update or math.inf lr = trainer.get_lr() train_meter = StopwatchMeter() train_meter.start() valid_losses = [None] valid_subsets = args.valid_subset.split(',') while lr > args.min_lr and epoch_itr.epoch < max_epoch and trainer.get_num_updates() < max_update: # train for one epoch train(args, trainer, task, epoch_itr) if not args.disable_validation and epoch_itr.epoch % args.validate_interval == 0: valid_losses = validate(args, trainer, task, epoch_itr, valid_subsets) else: valid_losses = [None] # only use first validation loss to update the learning rate lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0]) # save checkpoint if epoch_itr.epoch % args.save_interval == 0: checkpoint_utils.save_checkpoint(args, trainer, epoch_itr, valid_losses[0]) if ':' in getattr(args, 'data', ''): # sharded data: get train iterator for next epoch epoch_itr = trainer.get_train_iterator(epoch_itr.epoch) train_meter.stop() print('| done training in {:.1f} seconds'.format(train_meter.sum))
def main(args): assert args.path is not None, '--path required for generation!' assert not args.sampling or args.nbest == args.beam, \ '--sampling requires --nbest to be equal to --beam' assert args.replace_unk is None or args.raw_text, \ '--replace-unk requires a raw text dataset (--raw-text)' utils.import_user_module(args) if args.max_tokens is None and args.max_sentences is None: args.max_tokens = 12000 print(args) use_cuda = torch.cuda.is_available() and not args.cpu # Load dataset splits task = tasks.setup_task(args) task.load_dataset(args.gen_subset) # Set dictionaries try: src_dict = getattr(task, 'source_dictionary', None) except NotImplementedError: src_dict = None tgt_dict = task.target_dictionary # Load ensemble print('| loading model(s) from {}'.format(args.path)) models, _model_args = checkpoint_utils.load_model_ensemble( args.path.split(':'), arg_overrides=eval(args.model_overrides), task=task, ) # Optimize ensemble for generation for model in models: model.make_generation_fast_( beamable_mm_beam_size=None if args.no_beamable_mm else args.beam, need_attn=args.print_alignment, ) if args.fp16: model.half() if use_cuda: model.cuda() # Load alignment dictionary for unknown word replacement # (None if no unknown word replacement, empty if no path to align dictionary) align_dict = utils.load_align_dict(args.replace_unk) # Load dataset (possibly sharded) itr = task.get_batch_iterator( dataset=task.dataset(args.gen_subset), max_tokens=args.max_tokens, max_sentences=args.max_sentences, max_positions=utils.resolve_max_positions( task.max_positions(), *[model.max_positions() for model in models] ), ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test, required_batch_size_multiple=args.required_batch_size_multiple, num_shards=args.num_shards, shard_id=args.shard_id, num_workers=args.num_workers, ).next_epoch_itr(shuffle=False) # Initialize generator gen_timer = StopwatchMeter() generator = task.build_generator(args) # Generate and compute BLEU score if args.sacrebleu: scorer = bleu.SacrebleuScorer() else: scorer = bleu.Scorer(tgt_dict.pad(), tgt_dict.eos(), tgt_dict.unk()) num_sentences = 0 has_target = True with progress_bar.build_progress_bar(args, itr) as t: wps_meter = TimeMeter() for sample in t: sample = utils.move_to_cuda(sample) if use_cuda else sample if 'net_input' not in sample: continue prefix_tokens = None if args.prefix_size > 0: prefix_tokens = sample['target'][:, :args.prefix_size] gen_timer.start() hypos = task.inference_step(generator, models, sample, prefix_tokens) num_generated_tokens = sum(len(h[0]['tokens']) for h in hypos) gen_timer.stop(num_generated_tokens) for i, sample_id in enumerate(sample['id'].tolist()): has_target = sample['target'] is not None # Remove padding src_tokens = utils.strip_pad(sample['net_input']['src_tokens'][i, :], tgt_dict.pad()) target_tokens = None if has_target: target_tokens = utils.strip_pad(sample['target'][i, :], tgt_dict.pad()).int().cpu() # Either retrieve the original sentences or regenerate them from tokens. if align_dict is not None: src_str = task.dataset(args.gen_subset).src.get_original_text(sample_id) target_str = task.dataset(args.gen_subset).tgt.get_original_text(sample_id) else: if src_dict is not None: src_str = src_dict.string(src_tokens, args.remove_bpe) else: src_str = "" if has_target: target_str = tgt_dict.string(target_tokens, args.remove_bpe, escape_unk=True) if not args.quiet: if src_dict is not None: print('S-{}\t{}'.format(sample_id, src_str)) if has_target: print('T-{}\t{}'.format(sample_id, target_str)) # Process top predictions for j, hypo in enumerate(hypos[i][:args.nbest]): hypo_tokens, hypo_str, alignment = utils.post_process_prediction( hypo_tokens=hypo['tokens'].int().cpu(), src_str=src_str, alignment=hypo['alignment'].int().cpu() if hypo['alignment'] is not None else None, align_dict=align_dict, tgt_dict=tgt_dict, remove_bpe=args.remove_bpe, ) if not args.quiet: print('H-{}\t{}\t{}'.format(sample_id, hypo['score'], hypo_str)) print('P-{}\t{}'.format( sample_id, ' '.join(map( lambda x: '{:.4f}'.format(x), hypo['positional_scores'].tolist(), )) )) if args.print_alignment: print('A-{}\t{}'.format( sample_id, ' '.join(map(lambda x: str(utils.item(x)), alignment)) )) # Score only the top hypothesis if has_target and j == 0: if align_dict is not None or args.remove_bpe is not None: # Convert back to tokens for evaluation with unk replacement and/or without BPE target_tokens = tgt_dict.encode_line(target_str, add_if_not_exist=True) if hasattr(scorer, 'add_string'): scorer.add_string(target_str, hypo_str) else: scorer.add(target_tokens, hypo_tokens) wps_meter.update(num_generated_tokens) t.log({'wps': round(wps_meter.avg)}) num_sentences += sample['nsentences'] print('| Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)'.format( num_sentences, gen_timer.n, gen_timer.sum, num_sentences / gen_timer.sum, 1. / gen_timer.avg)) if has_target: print('| Generate {} with beam={}: {}'.format(args.gen_subset, args.beam, scorer.result_string())) return scorer
def main(args): utils.import_user_module(args) print(args) os.makedirs(args.destdir, exist_ok=True) target = not args.only_source task = tasks.get_task(args.task) def train_path(lang): return "{}{}".format(args.trainpref, ("." + lang) if lang else "") def file_name(prefix, lang): fname = prefix if lang is not None: fname += ".{lang}".format(lang=lang) return fname def dest_path(prefix, lang): return os.path.join(args.destdir, file_name(prefix, lang)) def dict_path(lang): return dest_path("dict", lang) + ".txt" def build_dictionary(filenames, src=False, tgt=False): assert src ^ tgt return task.build_dictionary( filenames, workers=args.workers, threshold=args.thresholdsrc if src else args.thresholdtgt, nwords=args.nwordssrc if src else args.nwordstgt, padding_factor=args.padding_factor, ) if not args.srcdict and os.path.exists(dict_path(args.source_lang)): raise FileExistsError(dict_path(args.source_lang)) if target and not args.tgtdict and os.path.exists( dict_path(args.target_lang)): raise FileExistsError(dict_path(args.target_lang)) if args.joined_dictionary: assert not args.srcdict or not args.tgtdict, \ "cannot use both --srcdict and --tgtdict with --joined-dictionary" if args.srcdict: src_dict = task.load_dictionary(args.srcdict) elif args.tgtdict: src_dict = task.load_dictionary(args.tgtdict) else: assert args.trainpref, "--trainpref must be set if --srcdict is not specified" src_dict = build_dictionary( { train_path(lang) for lang in [args.source_lang, args.target_lang] }, src=True) tgt_dict = src_dict else: if args.srcdict: src_dict = task.load_dictionary(args.srcdict) else: assert args.trainpref, "--trainpref must be set if --srcdict is not specified" src_dict = build_dictionary([train_path(args.source_lang)], src=True) if target: if args.tgtdict: tgt_dict = task.load_dictionary(args.tgtdict) else: assert args.trainpref, "--trainpref must be set if --tgtdict is not specified" tgt_dict = build_dictionary([train_path(args.target_lang)], tgt=True) else: tgt_dict = None src_dict.save(dict_path(args.source_lang)) if target and tgt_dict is not None: tgt_dict.save(dict_path(args.target_lang)) def make_binary_dataset(vocab, input_prefix, output_prefix, lang, num_workers): print("| [{}] Dictionary: {} types".format(lang, len(vocab) - 1)) n_seq_tok = [0, 0] replaced = Counter() def merge_result(worker_result): replaced.update(worker_result["replaced"]) n_seq_tok[0] += worker_result["nseq"] n_seq_tok[1] += worker_result["ntok"] input_file = "{}{}".format(input_prefix, ("." + lang) if lang is not None else "") offsets = Binarizer.find_offsets(input_file, num_workers) pool = None if num_workers > 1: pool = Pool(processes=num_workers - 1) for worker_id in range(1, num_workers): prefix = "{}{}".format(output_prefix, worker_id) pool.apply_async(binarize, (args, input_file, vocab, prefix, lang, offsets[worker_id], offsets[worker_id + 1]), callback=merge_result) pool.close() ds = indexed_dataset.make_builder(dataset_dest_file( args, output_prefix, lang, "bin"), impl=args.dataset_impl, vocab_size=len(vocab)) merge_result( Binarizer.binarize(input_file, vocab, lambda t: ds.add_item(t), offset=0, end=offsets[1])) if num_workers > 1: pool.join() for worker_id in range(1, num_workers): prefix = "{}{}".format(output_prefix, worker_id) temp_file_path = dataset_dest_prefix(args, prefix, lang) ds.merge_file_(temp_file_path) os.remove(indexed_dataset.data_file_path(temp_file_path)) os.remove(indexed_dataset.index_file_path(temp_file_path)) ds.finalize(dataset_dest_file(args, output_prefix, lang, "idx")) print("| [{}] {}: {} sents, {} tokens, {:.3}% replaced by {}".format( lang, input_file, n_seq_tok[0], n_seq_tok[1], 100 * sum(replaced.values()) / n_seq_tok[1], vocab.unk_word, )) def make_dataset(vocab, input_prefix, output_prefix, lang, num_workers=1): if args.dataset_impl == "raw": # Copy original text file to destination folder output_text_file = dest_path( output_prefix + ".{}-{}".format(args.source_lang, args.target_lang), lang, ) shutil.copyfile(file_name(input_prefix, lang), output_text_file) else: make_binary_dataset(vocab, input_prefix, output_prefix, lang, num_workers) def make_all(lang, vocab): if args.trainpref: make_dataset(vocab, args.trainpref, "train", lang, num_workers=args.workers) if args.validpref: for k, validpref in enumerate(args.validpref.split(",")): outprefix = "valid{}".format(k) if k > 0 else "valid" make_dataset(vocab, validpref, outprefix, lang, num_workers=args.workers) if args.testpref: for k, testpref in enumerate(args.testpref.split(",")): outprefix = "test{}".format(k) if k > 0 else "test" make_dataset(vocab, testpref, outprefix, lang, num_workers=args.workers) make_all(args.source_lang, src_dict) if target: make_all(args.target_lang, tgt_dict) print("| Wrote preprocessed data to {}".format(args.destdir)) if args.alignfile: assert args.trainpref, "--trainpref must be set if --alignfile is specified" src_file_name = train_path(args.source_lang) tgt_file_name = train_path(args.target_lang) freq_map = {} with open(args.alignfile, "r", encoding='utf-8') as align_file: with open(src_file_name, "r", encoding='utf-8') as src_file: with open(tgt_file_name, "r", encoding='utf-8') as tgt_file: for a, s, t in zip_longest(align_file, src_file, tgt_file): si = src_dict.encode_line(s, add_if_not_exist=False) ti = tgt_dict.encode_line(t, add_if_not_exist=False) ai = list(map(lambda x: tuple(x.split("-")), a.split())) for sai, tai in ai: srcidx = si[int(sai)] tgtidx = ti[int(tai)] if srcidx != src_dict.unk( ) and tgtidx != tgt_dict.unk(): assert srcidx != src_dict.pad() assert srcidx != src_dict.eos() assert tgtidx != tgt_dict.pad() assert tgtidx != tgt_dict.eos() if srcidx not in freq_map: freq_map[srcidx] = {} if tgtidx not in freq_map[srcidx]: freq_map[srcidx][tgtidx] = 1 else: freq_map[srcidx][tgtidx] += 1 align_dict = {} for srcidx in freq_map.keys(): align_dict[srcidx] = max(freq_map[srcidx], key=freq_map[srcidx].get) with open(os.path.join( args.destdir, "alignment.{}-{}.txt".format(args.source_lang, args.target_lang), ), "w", encoding='utf-8') as f: for k, v in align_dict.items(): print("{} {}".format(src_dict[k], tgt_dict[v]), file=f)