def compute_position_ids(self, inputs): """T5的相对位置分桶(直接翻译自官方T5源码) """ q, v = inputs # 计算位置差 q_idxs = K.arange(0, K.shape(q)[1], dtype='int32') q_idxs = K.expand_dims(q_idxs, 1) v_idxs = K.arange(0, K.shape(v)[1], dtype='int32') v_idxs = K.expand_dims(v_idxs, 0) pos_ids = v_idxs - q_idxs # 后处理操作 num_buckets, max_distance = self.input_dim, self.max_distance ret = 0 n = -pos_ids if self.bidirectional: num_buckets //= 2 ret += K.cast(K.less(n, 0), 'int32') * num_buckets n = K.abs(n) else: n = K.maximum(n, 0) # now n is in the range [0, inf) max_exact = num_buckets // 2 is_small = K.less(n, max_exact) val_if_large = max_exact + K.cast( K.log(K.cast(n, K.floatx()) / max_exact) / np.log(max_distance / max_exact) * (num_buckets - max_exact), 'int32', ) val_if_large = K.minimum(val_if_large, num_buckets - 1) ret += K.switch(is_small, n, val_if_large) return ret
def log_norm_step(self, inputs, states): """递归计算归一化因子 要点:1、递归计算;2、用logsumexp避免溢出。 """ inputs, mask = inputs[:, :-1], inputs[:, -1:] states = K.expand_dims(states[0], 2) # (batch_size, output_dim, 1) trans = K.expand_dims(self.trans, 0) # (1, output_dim, output_dim) outputs = tf.reduce_logsumexp(states + trans, 1) # (batch_size, output_dim) outputs = outputs + inputs outputs = mask * outputs + (1 - mask) * states[:, :, 0] return outputs, [outputs]
def compute_position_ids(self, inputs): q, v = inputs # 计算位置差 q_idxs = K.arange(0, K.shape(q)[1], dtype='int32') q_idxs = K.expand_dims(q_idxs, 1) v_idxs = K.arange(0, K.shape(v)[1], dtype='int32') v_idxs = K.expand_dims(v_idxs, 0) pos_ids = v_idxs - q_idxs # 后处理操作 max_position = (self.input_dim - 1) // 2 pos_ids = K.clip(pos_ids, -max_position, max_position) pos_ids = pos_ids + max_position return pos_ids
def call(self, inputs): """如果是条件Layer Norm,则默认以list为输入,第二个是condition """ if self.conditional: inputs, cond = inputs if self.hidden_units is not None: cond = self.hidden_dense(cond) for _ in range(K.ndim(inputs) - K.ndim(cond)): cond = K.expand_dims(cond, 1) if self.center: beta = self.beta_dense(cond) + self.beta if self.scale: gamma = self.gamma_dense(cond) + self.gamma else: if self.center: beta = self.beta if self.scale: gamma = self.gamma outputs = inputs if self.center: mean = K.mean(outputs, axis=-1, keepdims=True) outputs = outputs - mean if self.scale: variance = K.mean(K.square(outputs), axis=-1, keepdims=True) std = K.sqrt(variance + self.epsilon) outputs = outputs / std outputs = outputs * gamma if self.center: outputs = outputs + beta return outputs
def call(self, inputs, mask=None, a_mask=None, p_bias=None): """ 实现多头注意力 q_mask: 对输入的query序列的mask。 主要是将输出结果的padding部分置0。 v_mask: 对输入的value序列的mask。 主要是防止attention读取到padding信息。 a_mask: 对attention矩阵的mask。 不同的attention mask对应不同的应用。 p_bias: 在attention里的位置偏置。 一般用来指定相对位置编码的种类。 """ q, k, v = inputs[:3] q_mask, v_mask, n = None, None, 3 if mask is not None: if mask[0] is not None: q_mask = K.cast(mask[0], K.floatx()) if mask[2] is not None: v_mask = K.cast(mask[2], K.floatx()) if a_mask: a_mask = inputs[n] n += 1 # 线性变换 qw = self.q_dense(q) kw = self.k_dense(k) vw = self.v_dense(v) # 形状变换 qw = K.reshape(qw, (-1, K.shape(q)[1], self.heads, self.key_size)) kw = K.reshape(kw, (-1, K.shape(k)[1], self.heads, self.key_size)) vw = K.reshape(vw, (-1, K.shape(v)[1], self.heads, self.head_size)) # Attention a = tf.einsum('bjhd,bkhd->bhjk', qw, kw) # 处理位置编码 if p_bias == 'typical_relative': pos_embeddings = inputs[n] a = a + tf.einsum('bjhd,jkd->bhjk', qw, pos_embeddings) elif p_bias == 't5_relative': pos_embeddings = K.permute_dimensions(inputs[n], (2, 0, 1)) a = a + K.expand_dims(pos_embeddings, 0) # Attention(续) if p_bias != 't5_relative': # T5不用缩放 a = a / self.key_size**0.5 a = sequence_masking(a, v_mask, 1, -1) if a_mask is not None: a = a - (1 - a_mask) * 1e12 a = K.softmax(a) # 完成输出 o = tf.einsum('bhjk,bkhd->bjhd', a, vw) if p_bias == 'typical_relative': o = o + tf.einsum('bhjk,jkd->bjhd', a, pos_embeddings) o = K.reshape(o, (-1, K.shape(o)[1], self.out_dim)) o = self.o_dense(o) # 返回结果 o = sequence_masking(o, q_mask, 0) return o
def call(self, inputs): input_shape = K.shape(inputs) batch_size, seq_len = input_shape[0], input_shape[1] pos_embeddings = self.embeddings[:seq_len] pos_embeddings = K.expand_dims(pos_embeddings, 0) if self.merge_mode == 'add': return inputs + pos_embeddings else: pos_embeddings = K.tile(pos_embeddings, [batch_size, 1, 1]) return K.concatenate([inputs, pos_embeddings])
def dense_loss(self, y_true, y_pred): """y_true需要是one hot形式 """ # 导出mask并转换数据类型 if self.input_mask is None: mask = None else: mask = K.cast(self.input_mask, K.floatx()) # 计算目标分数 target_score = self.target_score(y_true, y_pred, mask) # 递归计算log Z init_states = [y_pred[:, 0]] if mask is None: mask = K.ones_like(y_pred[:, :, :1]) else: mask = K.expand_dims(mask, 2) y_pred = K.concatenate([y_pred, mask]) log_norm, _, _ = K.rnn(self.log_norm_step, y_pred[:, 1:], init_states) # 最后一步的log Z向量 log_norm = tf.reduce_logsumexp(log_norm, 1) # logsumexp得标量 # 计算损失 -log p return log_norm - target_score