コード例 #1
0
def img_to_tracks(fname):
    # Convert the tracking results saved in an OME-TIFF image to a dictionary of tracks
    img_data, order, _ = imread(fname, return_order=True)
    track_dict = defaultdict(list)
    where = np.where(img_data > 0)
    order_idx = {d: i for i, d in enumerate(order)}
    for val, point in zip(img_data[where], zip(*where)):
        track_dict[val].append([(point[order_idx.get(d, -1)] if d in order_idx else 0) for d in "TXYZ"])
    return track_dict
コード例 #2
0
def extract_tiled_annotations(in_tiles, out_path, nj, label_merging=False):
    """
    in_images: iterable
        List of BiaflowsTile
    out_path: str
        Path of output tiles
    nj: BiaflowsJob
        A BIAflows job object
    label_merging: bool
        True for merging only polygons having the same label. False for merging based on geometry only
    """
    # regroup tiles by original images
    grouped_tiles = defaultdict(list)
    for in_tile in in_tiles:
        grouped_tiles[in_tile.in_image.original_filename].append(in_tile)

    default_tile_builder = DefaultTileBuilder()
    annotations = AnnotationCollection()
    for tiles in grouped_tiles.values():
        # recreate the topology
        in_image = tiles[0].in_image
        topology = BiaflowsSldcImage(in_image, is_2d=True).tile_topology(
            default_tile_builder,
            max_width=nj.flags["tile_width"],
            max_height=nj.flags["tile_height"],
            overlap=nj.flags["tile_overlap"])

        # extract polygons for each tile
        ids, polygons, labels = list(), list(), list()
        label = -1
        for tile in tiles:
            out_tile_path = os.path.join(out_path, tile.filename)
            slices = mask_to_objects_2d(imread(out_tile_path),
                                        offset=tile.tile.abs_offset[::-1])
            ids.append(tile.tile.identifier)
            polygons.append([s.polygon for s in slices])
            labels.append([s.label for s in slices])
            # save label for use after merging
            if len(slices) > 0:
                label = slices[0]

        # merge
        merged = SemanticMerger(tolerance=1).merge(
            ids, polygons, topology, labels=labels if label_merging else None)
        if label_merging:
            merged = merged[0]
        annotations.extend([
            create_annotation_from_slice(
                _slice=AnnotationSlice(p, label),
                id_image=in_image.object.id,
                image_height=in_image.object.height,
                id_project=nj.project.id,
            ) for p in merged
        ])
    return annotations
コード例 #3
0
def extract_annotations_prttrk(out_path, in_image, project_id, track_prefix,
                               **kwargs):
    """
    Parameters:
    -----------
    out_path: str
    in_image: BiaflowsCytomineInput
    project_id: int
    name_prefix: str
    kwargs: dict
    """

    image = in_image.object
    path = os.path.join(out_path, in_image.filename)
    data, dim_order, _ = imread(path, return_order=True)
    ndim = get_dimensionality(dim_order)

    if ndim != 3:
        raise ValueError(
            "Annotation extraction for object tracking does not support masks with more than 3 dims..."
        )

    slices = mask_to_points_3d(data, time=True, assume_unique_labels=True)
    time_to_image = get_depth_to_slice(image)

    tracks = TrackCollection()
    annotations = AnnotationCollection()
    for slice_group in slices:
        curr_tracks, curr_annots = create_tracking_from_slice_group(
            image,
            slice_group,
            slice2point=lambda _slice: _slice.polygon,
            depth2slice=time_to_image,
            id_project=project_id,
            upload_object=False,
            track_prefix=track_prefix + "-particle",
            upload_group_id=True)
        tracks.extend(curr_tracks)
        annotations.extend(curr_annots)

    return tracks, annotations
コード例 #4
0
def extract_annotations_pixcla(out_path, in_image, project_id, track_prefix,
                               **kwargs):
    """
    Parameters
    ----------
    out_path: str
    in_image: BiaflowsCytomineInput
    project_id: int
    track_prefix: str
    kwargs: dict
    """
    image = in_image.object
    path = os.path.join(out_path, in_image.filename)
    data, dim_order, _ = imread(path, return_order=True)
    return mask_convert(data,
                        image,
                        project_id,
                        mask_2d_fn=mask_to_objects_2d,
                        mask_3d_fn=lambda m: mask_to_objects_3d(
                            m, background=0, assume_unique_labels=False),
                        track_prefix=track_prefix + "-object",
                        upload_group_id=get_dimensionality(dim_order) > 2)
コード例 #5
0
def extract_annotations_objdet(out_path,
                               in_image,
                               project_id,
                               track_prefix,
                               is_csv=False,
                               generate_mask=False,
                               result_file_suffix=".tif",
                               has_headers=False,
                               parse_fn=None,
                               **kwargs):
    """
    Parameters:
    -----------
    out_path: str
    in_image: BiaflowsCytomineInput
    project_id: int
    is_csv: bool
        True if the output data are stored in a csv file
    generate_mask: bool
        If result is in a CSV, True for generating a mask based on the points in the csv. Ignored if is_csv is False.
        The mask file is generated in out_path with the name "{in_image.id}.png".
    result_file_suffix: str
        Suffix of the result filename (prefix being the image id).
    has_headers: bool
        True if the csv contains some headers (ignored if is_csv is False)
    parse_fn: callable
        A function for extracting coordinates from the csv file (already separated) line.
    track_prefix: str
    kwargs: dict
    """
    image = in_image.object
    file = str(image.id) + result_file_suffix
    path = os.path.join(out_path, file)

    tracks = TrackCollection()
    annotations = AnnotationCollection()
    if not os.path.isfile(path):
        print("No output file at '{}' for image with id:{}.".format(
            path, image.id),
              file=sys.stderr)
        return annotations

    # whether the points are stored in a csv or a mask
    if is_csv:  # only 2d
        if parse_fn is None:
            raise ValueError(
                "parse_fn shouldn't be 'None' when result file is a CSV.")
        points = csv_to_points(path,
                               has_headers=has_headers,
                               parse_fn=parse_fn)
        annotations.extend([
            create_annotation_from_slice(point,
                                         image.id,
                                         image.height,
                                         project_id,
                                         upload_group_id=False)
            for point in points
        ])

        if generate_mask:
            image, dim_order, _ = imread(in_image.filepath, return_order=True)
            mask = slices_to_mask(points, image.shape).squeeze()
            imwrite_ome(os.path.join(out_path, in_image.filename),
                        mask,
                        dim_order=dim_order)
    else:
        # points stored in a mask
        data, dim_order, _ = imread(path)
        tracks, annotations = mask_convert(
            data,
            image,
            project_id,
            mask_2d_fn=mask_to_points_2d,
            mask_3d_fn=lambda m: mask_to_points_3d(
                m, time=False, assume_unique_labels=False),
            track_prefix=track_prefix + "-object",
            upload_group_id=get_dimensionality(dim_order) > 2)

    return tracks, annotations