def get_keywords_from_text(text_lines, taxonomy=None, output_mode="text", output_limit=CFG_BIBCLASSIFY_DEFAULT_OUTPUT_NUMBER, spires=False, match_mode="full", no_cache=False, with_author_keywords=False, rebuild_cache=False, only_core_tags=False): """Returns a formatted string containing the keywords for a single document.""" global _SKWS global _CKWS if not _SKWS: if taxonomy is not None: _SKWS, _CKWS = get_regular_expressions(taxonomy, rebuild=rebuild_cache, no_cache=no_cache) else: write_message("ERROR: Please specify an ontology in order to " "extract keywords.", stream=sys.stderr, verbose=1) text_lines = cut_references(text_lines) fulltext = normalize_fulltext("\n".join(text_lines)) author_keywords = None if with_author_keywords: author_keywords = get_author_keywords(_SKWS, _CKWS, fulltext) if match_mode == "partial": fulltext = _get_partial_text(fulltext) single_keywords = get_single_keywords(_SKWS, fulltext) composite_keywords = get_composite_keywords(_CKWS, fulltext, single_keywords) return _get_keywords_output(single_keywords, composite_keywords, taxonomy, author_keywords, output_mode, output_limit, spires, only_core_tags)
def get_keywords_from_local_file(local_file, taxonomy, rebuild_cache=False, match_mode="full", no_cache=False, with_author_keywords=False): text_lines = text_lines_from_local_file(local_file) global _SKWS global _CKWS if not _SKWS: if taxonomy is not None: _SKWS, _CKWS = get_regular_expressions(taxonomy, rebuild=rebuild_cache, no_cache=no_cache) else: write_message("ERROR: Please specify an ontology in order to " "extract keywords.", stream=sys.stderr, verbose=1) text_lines = cut_references(text_lines) fulltext = normalize_fulltext("\n".join(text_lines)) author_keywords = None if with_author_keywords: author_keywords = get_author_keywords(_SKWS, _CKWS, fulltext) if match_mode == "partial": fulltext = _get_partial_text(fulltext) single_keywords = get_single_keywords(_SKWS, fulltext) composite_keywords = get_composite_keywords(_CKWS, fulltext, single_keywords) return (single_keywords, composite_keywords)
def get_keywords_from_text( text_lines, taxonomy_name, output_mode="text", output_limit=bconfig.CFG_BIBCLASSIFY_DEFAULT_OUTPUT_NUMBER, spires=False, match_mode="full", no_cache=False, with_author_keywords=False, rebuild_cache=False, only_core_tags=False, extract_acronyms=False, **kwargs): """Extracts keywords from the list of strings @var text_lines: list of strings (will be normalized before being joined into one string) @keyword taxonomy_name: string, name of the taxonomy_name @keyword output_mode: string - text|html|marcxml|raw @keyword output_limit: int @keyword spires: boolean, if True marcxml output reflect spires codes @keyword match_mode: str - partial|full; in partial mode only beginning of the fulltext is searched @keyword no_cache: boolean, means loaded definitions will not be saved @keyword with_author_keywords: boolean, extract keywords from the pdfs @keyword rebuild_cache: boolean @keyword only_core_tags: boolean @return: if output_mode=raw, it will return (single_keywords, composite_keywords, author_keywords, acronyms) for other output modes it returns formatted string """ start_time = time.time() cache = reader.get_cache(taxonomy_name) if not cache: reader.set_cache( taxonomy_name, reader.get_regular_expressions(taxonomy_name, rebuild=rebuild_cache, no_cache=no_cache)) cache = reader.get_cache(taxonomy_name) _skw = cache[0] _ckw = cache[1] text_lines = normalizer.cut_references(text_lines) fulltext = normalizer.normalize_fulltext("\n".join(text_lines)) if match_mode == "partial": fulltext = _get_partial_text(fulltext) author_keywords = None if with_author_keywords: author_keywords = extract_author_keywords(_skw, _ckw, fulltext) acronyms = {} if extract_acronyms: acronyms = extract_abbreviations(fulltext) single_keywords = extract_single_keywords(_skw, fulltext) composite_keywords = extract_composite_keywords(_ckw, fulltext, single_keywords) if only_core_tags: single_keywords = clean_before_output( _filter_core_keywors(single_keywords)) composite_keywords = _filter_core_keywors(composite_keywords) else: # Filter out the "nonstandalone" keywords single_keywords = clean_before_output(single_keywords) log.info('Keywords generated in: %.1f sec' % (time.time() - start_time)) if output_mode == "raw": if output_limit: return ( _kw(_sort_kw_matches(single_keywords, output_limit)), _kw(_sort_kw_matches(composite_keywords, output_limit)), author_keywords, # this we don't limit (?) _kw(_sort_kw_matches(acronyms, output_limit))) else: return (single_keywords, composite_keywords, author_keywords, acronyms) else: return get_keywords_output(single_keywords, composite_keywords, taxonomy_name, author_keywords, acronyms, output_mode, output_limit, spires, only_core_tags)
def get_keywords_from_text(text_lines, taxonomy_name, output_mode="text", output_limit=bconfig.CFG_BIBCLASSIFY_DEFAULT_OUTPUT_NUMBER, spires=False, match_mode="full", no_cache=False, with_author_keywords=False, rebuild_cache=False, only_core_tags=False, extract_acronyms=False, **kwargs): """Extracts keywords from the list of strings @var text_lines: list of strings (will be normalized before being joined into one string) @keyword taxonomy_name: string, name of the taxonomy_name @keyword output_mode: string - text|html|marcxml|raw @keyword output_limit: int @keyword spires: boolean, if True marcxml output reflect spires codes @keyword match_mode: str - partial|full; in partial mode only beginning of the fulltext is searched @keyword no_cache: boolean, means loaded definitions will not be saved @keyword with_author_keywords: boolean, extract keywords from the pdfs @keyword rebuild_cache: boolean @keyword only_core_tags: boolean @return: if output_mode=raw, it will return (single_keywords, composite_keywords, author_keywords, acronyms) for other output modes it returns formatted string """ cache = reader.get_cache(taxonomy_name) if not cache: reader.set_cache(taxonomy_name, reader.get_regular_expressions(taxonomy_name, rebuild=rebuild_cache, no_cache=no_cache)) cache = reader.get_cache(taxonomy_name) _skw = cache[0] _ckw = cache[1] text_lines = normalizer.cut_references(text_lines) fulltext = normalizer.normalize_fulltext("\n".join(text_lines)) author_keywords = None if with_author_keywords: author_keywords = extract_author_keywords(_skw, _ckw, fulltext) if match_mode == "partial": fulltext = _get_partial_text(fulltext) single_keywords = extract_single_keywords(_skw, fulltext) composite_keywords = extract_composite_keywords(_ckw, fulltext, single_keywords) acronyms = {} if extract_acronyms: acronyms = extract_abbreviations(fulltext) if output_mode == "raw": if output_limit: return (_kw(_sort_kw_matches(single_keywords, output_limit)), _kw(_sort_kw_matches(composite_keywords, output_limit)), author_keywords, # this we don't limit (?) _kw(_sort_kw_matches(acronyms, output_limit))) else: return (single_keywords, composite_keywords, author_keywords, acronyms) else: return _get_keywords_output(single_keywords, composite_keywords, taxonomy_name, author_keywords, acronyms, output_mode, output_limit, spires, only_core_tags)