def plot(self, yrange=None): from biggles import FramedPlot, Points, Curve, PlotKey, Table,PlotLabel res=self.res etrue = res['etrue'] e1true = res['e1true'] e2true = res['e2true'] facvals = res['facvals'] sigma = res['sigma'] e1=res['e1'] e2=res['e2'] e=res['e'] T=res['T'] Ttrue=res['Ttrue']*facvals**2 e_pdiff = e/etrue-1 T_pdiff = T/Ttrue-1 compc= Curve(sigma, sigma*0) ce = Curve(sigma, e_pdiff, color='red') pe = Points(sigma, e_pdiff, type='filled circle') e_plt = FramedPlot() e_plt.add(ce,pe,compc) e_plt.xlabel = r'$\sigma$' e_plt.ylabel = r'$e/e_{true}-1$' cT = Curve(sigma, T_pdiff, color='red') pT = Points(sigma, T_pdiff, type='filled circle') T_plt = FramedPlot() T_plt.add(cT,pT,compc) T_plt.xlabel = r'$\sigma$' T_plt.ylabel = r'$T/T_{true}-1$' lab=PlotLabel(0.9,0.9,self.model,halign='right') T_plt.add(lab) if yrange is not None: e_plt.yrange=yrange T_plt.yrange=yrange tab=Table(2,1) tab[0,0] = T_plt tab[1,0] = e_plt tab.show()
def plot_boss_geometry(color=None, colorwheel=None, plt=None, width=1, show=True, region=None): """ Plot the boundaries in the boss_survey.par file """ import esutil as eu import biggles from biggles import FramedPlot, Curve bg = read_boss_geometry() if plt is None: plt = FramedPlot() plt.xlabel=r'$\lambda$' plt.ylabel=r'$\eta$' if color is not None: colors = [color]*len(bg) elif colorwheel is not None: colors = colorwheel else: colors = ['red','blue','green','magenta','navyblue','seagreen', 'firebrick','cadetblue','green4'] for i in xrange(len(bg)): b = bg[i] color = colors[i % len(colors)] c = eu.plotting.bbox( b['clambdaMin'], b['clambdaMax'], b['cetaMin'], b['cetaMax'], color=color, width=width) plt.add(c) if region == 'ngc': plt.yrange = [-40.,50.] plt.xrange = [-80.,80.] elif region == 'sgc': plt.yrange = [105.,165.] plt.xrange = [-60.,60.] else: plt.yrange = [-40.,165.] plt.xrange = [-80.,80.] plt.aspect_ratio = (plt.yrange[1]-plt.yrange[0])/(plt.xrange[1]-plt.xrange[0]) if show: plt.show() return plt
def plot_T(self, k, T, Tc=None, Tb=None): from biggles import FramedPlot, Curve, PlotKey plt=FramedPlot() c=Curve(k, T**2) c.label = '$T^2$' plt.add(c) plist = [c] if Tc is not None: cc=Curve(k,Tc**2,color='blue') cc.label = '$Tc^2$' plt.add(cc) plist.append(cc) if Tb is not None: tmp = where(Tb < 1.e-5, 1.e-5, Tb) cb=Curve(k,tmp**2,color='red') cb.label = '$Tb^2$' plt.add(cb) plist.append(cb) plt.xlog=True plt.ylog=True plt.ylabel = '$T^2' plt.xlabel = 'k' plt.yrange = [1.e-8,1.0] plt.aspect_ratio=1 if Tc is not None or Tb is not None: key=PlotKey(0.1,0.9,plist) plt.add(key) plt.show()
def test_fit_nfw_dsig(rmin=0.01): from biggles import FramedPlot,Points,SymmetricErrorBarsY,Curve omega_m=0.25 z=0.25 n = lensing.nfw.NFW(omega_m, z) r200 = 1.0 c = 5.0 rmax = 5.0 log_rmin = log10(rmin) log_rmax = log10(rmax) npts = 25 logr = numpy.linspace(log_rmin,log_rmax,npts) r = 10.0**logr ds = n.dsig(r, r200, c) # 10% errors dserr = 0.1*ds ds += dserr*numpy.random.standard_normal(ds.size) guess = numpy.array([r200,c],dtype='f8') # add 10% error to the guess guess += 0.1*guess*numpy.random.standard_normal(guess.size) res = fit_nfw_dsig(omega_m, z, r, ds, dserr, guess) r200_fit = res['r200'] r200_err = res['r200_err'] c_fit = res['c'] c_err = res['c_err'] print 'Truth:' print ' r200: %f' % r200 print ' c: %f' % c print 'r200_fit: %f +/- %f' % (r200_fit,r200_err) print ' c_fit: %f +/- %f' % (c_fit,c_err) print 'Cov:' print res['cov'] logr = numpy.linspace(log_rmin,log_rmax,1000) rlots = 10.0**logr yfit = n.dsig(rlots,r200_fit,c_fit) plt=FramedPlot() plt.add(Points(r,ds,type='filled circle')) plt.add(SymmetricErrorBarsY(r,ds,dserr)) plt.add(Curve(rlots,yfit,color='blue')) plt.xlabel = r'$r$ [$h^{-1}$ Mpc]' plt.ylabel = r'$\Delta\Sigma ~ [M_{sun} pc^{-2}]$' plt.xrange = [0.5*rmin, 1.5*rmax] plt.yrange = [0.5*(ds-dserr).min(), 1.5*(ds+dserr).max()] plt.xlog=True plt.ylog=True plt.show()
def make_plot(self): bindata=self.bindata bin_field=self.bin_field plt=FramedPlot() plt.uniform_limits=1 plt.xlog=True #plt.xrange=[0.5*bindata[bin_field].min(), 1.5*bindata[bin_field].max()] plt.xrange=self.s2n_range plt.xlabel=bin_field plt.ylabel = r'$\gamma$' if self.yrange is not None: plt.yrange=self.yrange xdata=bindata[bin_field] xerr=bindata[bin_field+'_err'] if self.shnum in sh1exp: g1exp=zeros(xdata.size)+sh1exp[self.shnum] g2exp=zeros(xdata.size)+sh2exp[self.shnum] g1exp_plt=Curve(xdata, g1exp) g2exp_plt=Curve(xdata, g2exp) plt.add(g1exp_plt) plt.add(g2exp_plt) xerrpts1 = SymmetricErrorBarsX(xdata, bindata['g1'], xerr) xerrpts2 = SymmetricErrorBarsX(xdata, bindata['g2'], xerr) type='filled circle' g1color='blue' g2color='red' g1pts = Points(xdata, bindata['g1'], type=type, color=g1color) g1errpts = SymmetricErrorBarsY(xdata, bindata['g1'], bindata['g1_err'], color=g1color) g2pts = Points(xdata, bindata['g2'], type=type, color=g2color) g2errpts = SymmetricErrorBarsY(xdata, bindata['g2'], bindata['g2_err'], color=g2color) g1pts.label=r'$\gamma_1$' g2pts.label=r'$\gamma_2$' key=biggles.PlotKey(0.9,0.5,[g1pts,g2pts],halign='right') plt.add( xerrpts1, g1pts, g1errpts ) plt.add( xerrpts2, g2pts, g2errpts ) plt.add(key) labels=self.get_labels() plt.add(*labels) plt.aspect_ratio=1 self.plt=plt
def plot_sub_pixel(ellip,theta, show=False): import biggles from biggles import PlotLabel,FramedPlot,Table,Curve,PlotKey,Points from pcolors import rainbow f=subpixel_file(ellip,theta,'fits') data = eu.io.read(f) colors = rainbow(data.size,'hex') pltSigma = FramedPlot() pltSigma.ylog=1 pltSigma.xlog=1 curves=[] for j in xrange(data.size): sigest2 = (data['Irr'][j,:] + data['Icc'][j,:])/2 pdiff = sigest2/data['sigma'][j]**2 -1 nsub=numpy.array(data['nsub'][j,:]) #pc = biggles.Curve(nsub, pdiff, color=colors[j]) pp = Points(data['nsub'][j,:], pdiff, type='filled circle',color=colors[j]) pp.label = r'$\sigma: %0.2f$' % data['sigma'][j] curves.append(pp) pltSigma.add(pp) #pltSigma.add(pc) #pltSigma.yrange=[0.8,1.8] #pltSigma.add(pp) c5 = Curve(linspace(1,8, 20), .005+zeros(20)) pltSigma.add(c5) key=PlotKey(0.95,0.95,curves,halign='right',fontsize=1.7) key.key_vsep=1 pltSigma.add(key) pltSigma.xlabel='N_{sub}' pltSigma.ylabel=r'$\sigma_{est}^2 /\sigma_{True}^2 - 1$' lab=PlotLabel(0.05,0.07,r'$\epsilon: %0.2f \theta: %0.2f$' % (ellip,theta),halign='left') pltSigma.add(lab) pltSigma.yrange = [1.e-5,0.1] pltSigma.xrange = [0.8,20] if show: pltSigma.show() epsfile=subpixel_file(ellip,theta,'eps') print("Writing eps file:",epsfile) pltSigma.write_eps(epsfile)
def plot_dsig_one(r, dsig, dsigerr, **kw): """ plot delta sigma useful if adding to an existing plot parameters ---------- r: array radius dsig: array delta sigma dsigerr: array error on delta sigma """ from biggles import FramedPlot nbin=1 _set_biggles_defs(nbin) visible=kw.get('visible',True) xlog=kw.get('xlog',True) ylog=kw.get('ylog',True) aspect_ratio=kw.get('aspect_ratio',1) is_ortho=kw.get('is_ortho',False) plt=kw.get('plt',None) if plt is None: plt=FramedPlot() plt.aspect_ratio=aspect_ratio plt.xlog=xlog plt.ylog=ylog plt.xlabel = LABELS['rproj'] if is_ortho: plt.ylabel = LABELS['osig'] else: plt.ylabel = LABELS['dsig'] xrng, yrng = _add_dsig_to_plot(plt, r, dsig, dsigerr, **kw) plt.xrange=xrng plt.yrange=yrng if visible: plt.show() return plt
def plot_drho(comb=None, r=None, drho=None, drhoerr=None, color='black',type='filled circle', nolabel=False, noshow=False, minval=1.e-5, aspect_ratio=1): """ This one stands alone. """ if comb is not None: r=comb['rdrho'] drho=comb['drho'] drhoerr=comb['drhoerr'] else: if r is None or drho is None or drhoerr is None: raise ValueError("Send a combined struct or r,drho,drhoerr") plt=FramedPlot() plt.aspect_ratio=aspect_ratio plt.xlog=True plt.ylog=True if not nolabel: plt.xlabel = r'$r$ [$h^{-1}$ Mpc]' plt.ylabel = r'$\delta\rho ~ [M_{\odot} pc^{-3}]$' od=add_to_log_plot(plt, r, drho, drhoerr, color=color, type=type, minval=minval) # for drho we need even broader yrange plt.xrange = od['xrange'] yr=od['yrange'] plt.yrange = [0.5*yr[0], 3*yr[1]] if not noshow: plt.show() od['plt'] = plt return od
def plot_fits(self,st): import biggles biggles.configure( 'default', 'fontsize_min', 2) parnames=['A','a','g0','gmax'] npars=len(parnames) tab=Table(npars,1) magmiddle=(st['minmag'] + st['maxmag'])/2 for i in xrange(npars): yval=st['pars'][:,i] yerr=st['perr'][:,i] ymean=yval.mean() ystd=yval.std() yrange=[ymean-3.5*ystd, ymean+3.5*ystd] pts=Points(magmiddle, yval, type='filled circle') yerrpts=SymmetricErrorBarsY(magmiddle,yval,yerr) xerrpts=ErrorBarsX(yval, st['minmag'], st['maxmag']) plt=FramedPlot() plt.yrange=yrange plt.add(pts,xerrpts, yerrpts) plt.xlabel='mag' plt.ylabel=parnames[i] tab[i,0] = plt if self.show: tab.show() d=files.get_prior_dir() d=os.path.join(d, 'plots') epsfile='pofe-pars-%s.eps' % self.otype epsfile=os.path.join(d,epsfile) eu.ostools.makedirs_fromfile(epsfile) print epsfile tab.write_eps(epsfile) os.system('converter -d 100 %s' % epsfile)
def plot_fits(self, st): import biggles biggles.configure("default", "fontsize_min", 2) parnames = ["A", "a", "g0", "gmax"] npars = len(parnames) tab = Table(npars, 1) magmiddle = (st["minmag"] + st["maxmag"]) / 2 for i in xrange(npars): yval = st["pars"][:, i] yerr = st["perr"][:, i] ymean = yval.mean() ystd = yval.std() yrange = [ymean - 3.5 * ystd, ymean + 3.5 * ystd] pts = Points(magmiddle, yval, type="filled circle") yerrpts = SymmetricErrorBarsY(magmiddle, yval, yerr) xerrpts = ErrorBarsX(yval, st["minmag"], st["maxmag"]) plt = FramedPlot() plt.yrange = yrange plt.add(pts, xerrpts, yerrpts) plt.xlabel = "mag" plt.ylabel = parnames[i] tab[i, 0] = plt if self.show: tab.show() d = files.get_prior_dir() d = os.path.join(d, "plots") epsfile = "pofe-pars-%s.eps" % self.otype epsfile = os.path.join(d, epsfile) eu.ostools.makedirs_fromfile(epsfile) print epsfile tab.write_eps(epsfile) os.system("converter -d 100 %s" % epsfile)
def plot_mass(comb=None, r=None, mass=None, masserr=None, color='black',type='filled circle', nolabel=False, noshow=False, minval=1.e11, aspect_ratio=1): if comb is not None: r=comb['rmass'] mass=comb['mass'] masserr=comb['masserr'] else: if r is None or mass is None or masserr is None: raise ValueError("Send a combined struct or r,mass,masserr") plt=FramedPlot() plt.aspect_ratio=aspect_ratio plt.xlog=True plt.ylog=True if not nolabel: plt.xlabel = r'$r$ [$h^{-1}$ Mpc]' plt.ylabel = r'$M(<r) ~ [h^{-1} M_{\odot}]$' od=add_to_log_plot(plt, r, mass, masserr, color=color, type=type, minval=minval) plt.xrange = od['xrange'] plt.yrange = od['yrange'] if not noshow: plt.show() od['plt'] = plt return od
def plot_fits(self,st): import biggles biggles.configure( 'default', 'fontsize_min', 2) if self.objtype=='gexp': parnames=['A','a','g0','gmax'] else: parnames=['A','b','c'] npars=len(parnames) tab=Table(npars,1) magmiddle=(st['minmag'] + st['maxmag'])/2 for i in xrange(npars): yval=st['pars'][:,i] yerr=st['perr'][:,i] ymean=yval.mean() ystd=yval.std() yrange=[ymean-3.5*ystd, ymean+3.5*ystd] pts=Points(magmiddle, yval, type='filled circle') yerrpts=SymmetricErrorBarsY(magmiddle,yval,yerr) xerrpts=ErrorBarsX(yval, st['minmag'], st['maxmag']) plt=FramedPlot() plt.yrange=yrange plt.add(pts,xerrpts, yerrpts) plt.xlabel='mag' plt.ylabel=parnames[i] tab[i,0] = plt tab.show()
def plot_dsig(**keys): """ This one stands alone. """ comb=keys.get('comb',None) r=keys.get('r',None) dsig=keys.get('dsig',None) dsigerr=keys.get('dsigerr',None) color=keys.get('color','black') type=keys.get('type','filled circle') nolabel=keys.get('nolabel',False) show=keys.get('show',True) minval=keys.get('minval',1.e-3) xlog=keys.get('xlog',True) ylog=keys.get('ylog',True) aspect_ratio=keys.get('aspect_ratio',1) plt=keys.get('plt',None) label=keys.get('label',None) if comb is not None: r=comb['r'] dsig=comb['dsig'] dsigerr=comb['dsigerr'] else: if r is None or dsig is None or dsigerr is None: raise ValueError("Send a combined struct or r,dsig,dsigerr") if plt is None: plt=FramedPlot() plt.aspect_ratio=aspect_ratio plt.xlog=xlog plt.ylog=ylog if not nolabel: plt.xlabel = labels['rproj'] plt.ylabel = labels['dsig'] if ylog: od=add_to_log_plot(plt, r, dsig, dsigerr, color=color, type=type, minval=minval) plt.xrange = od['xrange'] plt.yrange = od['yrange'] if label: od['p'].label=label else: zpts=Curve(r, dsig*0) plt.add(zpts) pts=Points(r, dsig, type=type, color=color) if label: pts.label=label plt.add(pts) if dsigerr is not None: epts=SymErrY(r, dsig, dsigerr, color=color) plt.add(epts) yrng=keys.get('yrange',None) xrng=keys.get('xrange',None) if yrng: plt.yrange=yrng if xrng: plt.xrange=xrng else: if xlog: plt.xrange=eu.plotting.get_log_plot_range(r) if show: plt.show() if ylog: od['plt'] = plt return od else: return plt
def plot2dsig_over(r1,dsig1,dsig1err,r2,dsig2, dsig2err, **keys): ptype1=keys.get('ptype1','filled circle') ptype2=keys.get('ptype2','filled circle') size1=keys.get('size1',1) size2=keys.get('size2',1) color1=keys.get('color1','red') color2=keys.get('color2','blue') label = keys.get('label',None) label1 = keys.get('label1',None) label2 = keys.get('label2',None) xrng = keys.get('xrange',None) yrng = keys.get('yrange',None) show = keys.get('show',True) ylog = keys.get('ylog',True) plt=keys.get('plt',None) yall=numpy.concatenate((dsig1, dsig2)) yerrall=numpy.concatenate((dsig1err, dsig2err)) if yrng is None: if ylog: yrng = eu.plotting.get_log_plot_range(yall, err=yerrall, input_range=yrng) rr=numpy.concatenate((r1,r2)) if xrng is None: xrng = eu.plotting.get_log_plot_range(rr) if plt is None: plt=FramedPlot() plt.xlog=True plt.ylog=ylog plt.xrange=xrng plt.yrange=yrng plt.xlabel = labels['rproj'] plt.ylabel = labels['dsig'] dsig1_p = Points(r1, dsig1, color=color1, type=ptype1, size=size1) dsig1err_p = SymErrY(r1, dsig1, dsig1err, color=color2) dsig1_p.label=label1 dsig2_p = Points(r2, dsig2, color=color2, type=ptype2, size=size2) dsig2err_p = SymErrY(r2, dsig2, dsig2err, color=color2) dsig2_p.label=label2 plt.add(dsig1_p, dsig2_p) if ylog: # biggles chokes if you give it negative data for a log plot eu.plotting.add_log_error_bars(plt,'y',r1,dsig1,dsig1err,yrng, color=color1) eu.plotting.add_log_error_bars(plt,'y',r2,dsig2,dsig2err,yrng, color=color2) else: err1 = biggles.SymmetricErrorBarsY(r1,dsig1,dsig1err,color=color1) err2 = biggles.SymmetricErrorBarsY(r2,dsig2,dsig2err,color=color2) plt.add(err1,err2) zerop = biggles.Curve(xrng, [0,0]) plt.add(zerop) if label is not None: plt.add(PlotLabel(0.9,0.9,label,halign='right')) if label1 is not None or label2 is not None: key = PlotKey(0.9,0.15, [dsig1_p,dsig2_p], halign='right') plt.add(key) if show: plt.show() return plt
def plot_coverage(self, region='both', show=True, dops=True): import biggles from biggles import FramedPlot, Points, PlotKey l = self.read() w,=numpy.where( (l['ra'] >= 0.0) & (l['ra'] <= 360.0) ) if w.size != l.size: print("threw out",l.size-w.size,"with bad ra") l=l[w] llam,leta = eu.coords.eq2sdss(l['ra'],l['dec']) maskflags = l['maskflags'] lammin,lammax = (-70.,70.) if region=='ngc': # a bit high to make room for the legend emin,emax=(-40,60) biggles.configure('screen','width', 1800) biggles.configure('screen','height', 1140) elif region=='sgc': emin,emax=(100,165) biggles.configure('screen','width', 1800) biggles.configure('screen','height', 1140) else: emin,emax=(-40,165) biggles.configure('screen','width', 1140) biggles.configure('screen','height', 1140) wl=where1((leta > emin) & (leta < emax)) llam=llam[wl] leta=leta[wl] maskflags=maskflags[wl] plt=FramedPlot() plt.xlabel=r'$\lambda$' plt.ylabel=r'$\eta$' print("adding all lenses") type = 'filled circle' symsize=0.2 allp = Points(llam,leta,type=type,size=symsize) allp.label='all' plt.add(allp) wquad = es_sdsspy.stomp_maps.quad_check(maskflags) print("adding quad pass") quadp = Points(llam[wquad],leta[wquad],type=type,color='red',size=symsize) quadp.label = 'quad good' plt.add(quadp) fakepoints = eu.plotting.fake_filled_circles(['all','quad good'],['black','red']) key=PlotKey(0.95,0.95,fakepoints,halign='right') plt.add(key) es_sdsspy.stomp_maps.plot_boss_geometry(color='blue',plt=plt,show=False) xrng = (lammin, lammax) yrng = (emin, emax) plt.xrange = xrng plt.yrange = yrng plt.aspect_ratio = (yrng[1]-yrng[0])/float(xrng[1]-xrng[0]) if show: plt.show() if dops: d = lensing.files.sample_dir(type='lcat',sample=self['sample']) d = os.path.join(d,'plots') if not os.path.exists(d): os.makedirs(d) epsfile = os.path.join(d, 'lcat-%s-%s-coverage.eps' % (self['sample'],region) ) print("Writing to eps file:",epsfile) plt.write_eps(epsfile) return plt
def doplot(run, st, s2n_field, setname, s2n_range, sratio_range, psfnums, nobj): tab=Table(2,1) color1='blue' color2='red' m1pts=Points(st['s2n'],st['m1'],type='filled circle',color=color1) m1errpts=SymmetricErrorBarsY(st['s2n'],st['m1'],st['m1_err'],color=color1) m2pts=Points(st['s2n'],st['m2'],type='filled circle',color=color2) m2errpts=SymmetricErrorBarsY(st['s2n'],st['m2'],st['m2_err'],color=color2) c1pts=Points(st['s2n'],st['c1'],type='filled circle',color=color1) c1errpts=SymmetricErrorBarsY(st['s2n'],st['c1'],st['c1_err'],color=color1) c2pts=Points(st['s2n'],st['c2'],type='filled circle',color=color2) c2errpts=SymmetricErrorBarsY(st['s2n'],st['c2'],st['c2_err'],color=color2) m1pts.label=r'$\gamma_1$' m2pts.label=r'$\gamma_2$' key=PlotKey(0.9,0.2,[m1pts,m2pts], halign='right') xrng=array( [0.5*s2n_range[0], 1.5*s2n_range[1]]) cyrng=get_symmetric_range(st['c1'],st['c1_err'],st['c2'],st['c2_err']) myrng=get_symmetric_range(st['m1'],st['m1_err'],st['m2'],st['m2_err']) mplt=FramedPlot() cplt=FramedPlot() mplt.xlog=True cplt.xlog=True mplt.xrange=xrng cplt.xrange=xrng #mplt.yrange=myrng #cplt.yrange=cyrng mplt.yrange=[-0.15,0.15] cplt.yrange=[-0.01,0.01] mplt.xlabel=s2n_field mplt.ylabel='m' cplt.xlabel=s2n_field cplt.ylabel='c' zplt=Curve(xrng, [0,0]) mallow=Curve(xrng, [-0.004, 0.004]) callow=Curve(xrng, [-0.0004, 0.0004]) mallow=FillBetween(xrng, [0.004,0.004], xrng, [-0.004,-0.004], color='grey80') callow=FillBetween(xrng, [0.0004,0.0004], xrng, [-0.0004,-0.0004], color='grey80') labels=get_labels(run, psfnums, setname, nobj, sratio_range) mplt.add( mallow, zplt, m1pts, m1errpts, m2pts, m2errpts, key ) mplt.add(*labels) cplt.add( callow, zplt, c1pts, c1errpts, c2pts, c2errpts ) tab[0,0] = mplt tab[1,0] = cplt tab.show()
def plot_vs_field(self, field, plot_type, rmag_min=None, rmag_max=None, fmin=None, fmax=None, nbin=20, nperbin=50000, xrng=None, yrng=None, show=True): allowed=['meane','residual'] if plot_type not in allowed: raise ValueError("plot_type should be in [%s]" % ','.join(allowed)) if plot_type == 'residual' and self.sweeptype != 'star': raise ValueError("residuals only supported for stars") if rmag_min is None: if self.sweeptype == 'gal': rmag_min=18.0 else: rmag_min=15.0 if rmag_max is None: if self.sweeptype == 'gal': rmag_max=21.8 else: rmag_max=19.0 # this will only load the main data once. self.load_data(field) print("Using rmag range: [%0.2f,%0.2f]" % (rmag_min,rmag_max)) # notes # - amflags here is really corrflags_rg for gals # - e1 is really e1_rg for gals logic = ((self['amflags'] == 0) & (self['e1'] < 4) & (self['e1'] > -4) & (self['rmag'] > rmag_min) & (self['rmag'] < rmag_max) ) if self.sweeptype == 'gal': logic = logic & (self['R'] > 1.0/3.0) & (self['R'] < 1.0) w=where1(logic) print("Number passing cuts:",w.size) minnum=31000 if w.size < minnum: print("want %d good objects, found %d" % (minnum,w.size)) return weights = 1.0/(0.32**2 + self['uncer'][w]**2) # we can try to get nice labels for some fields if field == 'fwhm_psf': field_data = self['fwhm_psf'][w] fstr = 'PSF FWHM (arcsec)' elif field == 'sigma_psf': field_data = self['sigma_psf'][w] fstr = r'\sigma_{PSF}' elif field == 'sigma': field_data = self['sigma'][w] fstr = r'\sigma_{obj+PSF}' else: field_data = self[field][w] fstr=field fstr = fstr.replace('_','\_') print("Plotting for field:",field) if plot_type == 'residual': print(' doing: residual') be1 = eu.stat.Binner(field_data, self['e1'][w]-self['e1_psf'][w], weights=weights) be2 = eu.stat.Binner(field_data, self['e2'][w]-self['e2_psf'][w], weights=weights) ylabel = r'$<e_{star}-e_{PSF}>$' else: print(' doing meane') be1 = eu.stat.Binner(field_data, self['e1'][w], weights=weights) be2 = eu.stat.Binner(field_data, self['e2'][w], weights=weights) ylabel = r'$<e>$' # regular hist for display print(" regular fixed binsize hist") xm,xe,xstd=eu.stat.wmom(field_data, weights, sdev=True) #hxmin = xm-4.0*xstd #hxmax = xm+4.0*xstd bsize = xstd/5. hist = eu.stat.histogram(field_data, binsize=bsize, weights=weights, more=True) print(" hist e1, nperbin: ",nperbin) be1.dohist(nperbin=nperbin, min=fmin, max=fmax) #be1.dohist(nbin=nbin, min=fmin, max=fmax) print(" stats e1") be1.calc_stats() print(" hist e2, nperbin: ",nperbin) be2.dohist(nperbin=nperbin, min=fmin, max=fmax) #be2.dohist(nbin=nbin, min=fmin, max=fmax) print(" stats e2") be2.calc_stats() plt = FramedPlot() if xrng is not None: plt.xrange=xrng else: if field == 'R': plt.xrange=[0.29,1.01] if yrng is not None: plt.yrange=yrng ymin = yrng[0] ymax = 0.8*yrng[1] else: ymin = min( be1['wymean'].min(),be2['wymean'].min() ) ymax = 0.8*max( be1['wymean'].max(),be2['wymean'].max() ) # this is a histogram-like object ph = eu.plotting.make_hist_curve(hist['low'], hist['high'], hist['whist'], ymin=ymin, ymax=ymax, color='grey50') plt.add(ph) p1 = Points( be1['wxmean'], be1['wymean'], type='filled circle', color='blue') p1err = SymErrY( be1['wxmean'], be1['wymean'], be1['wyerr2'], color='blue') p1.label = r'$e_1$' p2 = Points( be2['wxmean'], be2['wymean'], type='filled circle', color='red') p2.label = r'$e_2$' p2err = SymErrY( be2['wxmean'], be2['wymean'], be2['wyerr2'], color='red') key = PlotKey(0.1,0.9, [p1,p2]) plt.add(p1, p1err, p2, p2err, key) if self.camcol != 'any' and field == 'R' and plot_type=='meane': order=3 print(" getting poly order",order) coeff1 = numpy.polyfit(be1['wxmean'], be1['wymean'], order) poly1=numpy.poly1d(coeff1) coeff2 = numpy.polyfit(be2['wxmean'], be2['wymean'], order) poly2=numpy.poly1d(coeff2) ps1 = Curve( be1['wxmean'], poly1(be1['wxmean']), color='blue') ps2 = Curve( be2['wxmean'], poly2(be2['wxmean']), color='red') plt.add(ps1,ps2) polyf = self.R_polyfile(self.camcol, rmag_max) out={'coeff_e1':list([float(c) for c in coeff1]), 'coeff_e2':list([float(c) for c in coeff2])} print(" -- Writing poly coeffs to:",polyf) eu.io.write(polyf,out) if field != 'rmag': rmag_lab = \ PlotLabel(0.1,0.05,'%0.2f < rmag < %0.2f' % (rmag_min,rmag_max), halign='left') plt.add(rmag_lab) procrun_lab = PlotLabel(0.1,0.1, 'procrun: %s filter: %s' % (self.procrun, self.band), halign='left') plt.add(procrun_lab) cy=0.9 if self.run != 'any': run_lab = PlotLabel(0.9,0.9, 'run: %06i' % self.run, halign='right') plt.add(run_lab) cy=0.8 if self.camcol != 'any': run_lab = PlotLabel(0.9,cy, 'camcol: %i' % self.camcol, halign='right') plt.add(run_lab) plt.xlabel = r'$'+fstr+'$' plt.ylabel = ylabel if show: plt.show() epsfile = self.plotfile(field, rmag_max, plot_type=plot_type) eu.ostools.makedirs_fromfile(epsfile, verbose=True) print(" Writing eps file:",epsfile) plt.write_eps(epsfile) converter.convert(epsfile, verbose=True)
def test_fit_nfw_lin_dsig(rmin=0.01): from biggles import FramedPlot,Points,SymmetricErrorBarsY,Curve,PlotKey omega_m=0.25 z=0.25 r200 = 1.0 c = 5.0 B=10.0 rmax = 50.0 log_rmin = log10(rmin) log_rmax = log10(rmax) npts = 30 r = 10.0**linspace(log_rmin,log_rmax,npts) fitter = NFWBiasFitter(omega_m,z,r) ds = fitter.dsig(r, r200, c, B) # 10% errors dserr = 0.1*ds ds += dserr*numpy.random.standard_normal(ds.size) guess = numpy.array([r200,c,B],dtype='f8') # add 10% error to the guess guess += 0.1*guess*numpy.random.standard_normal(guess.size) res = fitter.fit(ds,dserr,guess, more=True) r200_fit=res['r200'] r200_err = res['r200_err'] c_fit=res['c'] c_err = res['c_err'] B_fit=res['B'] B_err = res['B_err'] print 'Truth:' print ' r200: %f' % r200 print ' c: %f' % c print ' B: %f' % B print 'r200_fit: %f +/- %f' % (r200_fit,r200_err) print ' c_fit: %f +/- %f' % (c_fit,c_err) print ' B_fit: %f +/- %f' % (B_fit,B_err) print 'Cov:' print res['cov'] rfine = 10.0**linspace(log_rmin,log_rmax,100) fitter2 = NFWBiasFitter(omega_m,z,rfine) yfit = fitter2.dsig(rfine, r200_fit, c_fit, B_fit) yfit_nfw = fitter2.nfw.dsig(rfine, r200_fit, c_fit) yfit_lin = fitter2.lin_dsig(rfine,B_fit) plt=FramedPlot() plt.add(Points(r,ds,type='filled circle')) plt.add(SymmetricErrorBarsY(r,ds,dserr)) cyfit = Curve(rfine,yfit,color='blue') cyfit_nfw = Curve(rfine,yfit_nfw,color='red') cyfit_lin = Curve(rfine,yfit_lin,color='orange') cyfit.label = 'Best Fit' cyfit_nfw.label = 'NFW' cyfit_lin.label = 'linear' key=PlotKey(0.1,0.3,[cyfit,cyfit_nfw,cyfit_lin]) plt.add(cyfit,cyfit_nfw,cyfit_lin,key) plt.xlabel = r'$r$ [$h^{-1}$ Mpc]' plt.ylabel = r'$\Delta\Sigma ~ [M_{sun} pc^{-2}]$' plt.xrange = [0.5*rmin, 1.5*rmax] plt.yrange = [0.5*(ds-dserr).min(), 1.5*(ds+dserr).max()] plt.xlog=True plt.ylog=True plt.show()
def compare_idl(ratios=False, epsfile=None): from biggles import FramedPlot,Points, Table omega_m=0.25 omega_b=0.055 sigma_8=1.0 h=1.0 ns=0.98 r=eu.recfile.Open('/home/esheldon/tmp/linear-compare/pkidl.dat', delim=' ',dtype=[('k','f8'),('pk','f8')]) pkidlst = r.read() r.close() k,pkidl = pkidlst['k'],pkidlst['pk'] r=eu.recfile.Open('/home/esheldon/tmp/linear-compare/xiidl.dat', delim=' ',dtype=[('r','f8'),('xi','f8')]) xiidlst = r.read() r.close() r,xiidl = xiidlst['r'],xiidlst['xi'] l = Linear(omega_m=omega_m,omega_b=omega_b,sigma_8=sigma_8,h=h,ns=ns) pk = l.pk(k) xi = l.xi(r, nplk=1000) #xi = l.xi(r) pkrat = pk/pkidl xirat = xi/xiidl tab=Table(2,1) symsize=1 if ratios: pkplt = FramedPlot() pkplt.xlabel='k' pkplt.xlog=True pkplt.ylabel='P(k)/P(k) dave' pkplt.add( Points(k,pkrat,type='filled circle',size=symsize) ) pkplt.add( Curve(k,pkrat,color='blue') ) tab[0,0] = pkplt if ratios: xiplt = FramedPlot() xiplt.xlabel='r' xiplt.xlog=True xiplt.ylabel='xi(r)/xi(r) dave' xiplt.add( Points(r,xirat,type='filled circle',size=symsize) ) xiplt.add( Curve(r,xirat,color='blue') ) tab[1,0] = xiplt else: # big log-log plot limxi = where(xi < 1.e-5, 1.e-5, xi) #pxi = Points(r,limxi,type='filled circle',size=symsize) cxi = Curve(r,limxi,color='blue') limxiidl = where(xiidl < 1.e-5, 1.e-5, xiidl) #pxiidl = Points(r,limxiidl,type='filled circle',size=symsize) cxiidl = Curve(r,limxiidl,color='red') xipltall = FramedPlot() xipltall.xlabel='r' xipltall.xlog=True xipltall.ylog=True xipltall.ylabel='xi(r)' #xipltall.add(pxi,cxi,pxiidl,cxiidl) xipltall.add(cxi,cxiidl) tab[0,0] = xipltall # zoomed in plot xiplt = FramedPlot() xiplt.xlabel='r' xiplt.xlog=True xiplt.ylabel='xi(r)' pxi = Points(r,xi,type='filled circle',size=symsize) cxi = Curve(r,xi,color='blue') cxi.label = 'Mine' pxiidl = Points(r,xiidl,type='filled circle',size=symsize) cxiidl = Curve(r,xiidl,color='red') cxiidl.label = 'Dave' key=PlotKey(0.8,0.9, [cxi,cxiidl]) xiplt.add(pxi,cxi,pxiidl,cxiidl) xiplt.xrange = [50.0,r.max()] xiplt.yrange=[-2.e-3,1.e-2] xiplt.add(key) tab[1,0] = xiplt if epsfile is not None: tab.write_eps(epsfile) else: tab.show()
def test_scinv_npts(self, nplot, show=False, reload=False, type="png"): """ Test accuracy as a function of the numer of points used in the integration. """ dzl = 0.015 zlmin = 0.02 zlmax = 0.6 from biggles import Points, FramedPlot, PlotKey, Table, Histogram, Curve from time import time import lensing import pcolors if self.data is None or reload: self.load_example_data() # this is old ScinvCalculator, need to make work # with new one scalc1000 = ScinvCalculator(self.zs, dzl, zlmin, zlmax, npts=1000) nptsvals = [100, 200, 300, 400, 500, 600, 700, 800, 900] numcheck = len(nptsvals) # colors=['black','magenta','blue','green','orange','red'] colors = pcolors.rainbow(len(nptsvals), "hex") scalc = [] for npts in nptsvals: scalc.append(ScinvCalculator(self.zs, dzl, zlmin, zlmax, npts=npts)) times = numpy.zeros(numcheck, dtype="f8") time1000 = 0.0 # we'll fill this in scinv_all = numpy.zeros((numcheck, scalc1000.zlvals.size)) xlim = [0, scalc1000.zsvals.max()] for i in xrange(nplot): pz = self.data["pofz"][i] print("Doing 1000...", end="") tm0 = time() scinv1000 = scalc1000.calc_mean_scinv(pz) time1000 += time() - tm0 print("done") for j in xrange(numcheck): npts = nptsvals[j] print("%d " % npts, end="") tm0 = time() scinv_all[j, :] = scalc[j].calc_mean_scinv(pz) times[j] += time() - tm0 print("\nplotting") # plot the p(z) tab = Table(3, 1) binsize = scalc1000.zsvals[1] - scalc1000.zsvals[0] pzh = Histogram(pz, x0=scalc1000.zsvals[0], binsize=binsize) plt_pzh = FramedPlot() plt_pzh.xrange = xlim plt_pzh.xtitle = r"$z_s$" plt_pzh.ytitle = r"$P(z_s)$" plt_pzh.add(pzh) tab[0, 0] = plt_pzh # plot scinv for each npts value plt_scinv = FramedPlot() plt_scinv.xrange = xlim scinv_plots = [] for j in xrange(numcheck): npts = nptsvals[j] p = Curve(scalc[j].zlvals, scinv_all[j, :], type="solid", color=colors[j]) p.label = "npts: %d" % npts plt_scinv.add(p) scinv_plots.append(p) scinv_key = PlotKey(0.95, 0.9, scinv_plots, halign="right") plt_scinv.add(scinv_key) plt_scinv.ylabel = r"$\langle \Sigma_{crit}^{-1}(z_{lens}) \rangle$" plt_scinv.xlabel = r"$z_{lens}$" plt_scinv.yrange = [0, 2.1e-4] tab[1, 0] = plt_scinv # ratio to 1000 points plt_rat = FramedPlot() plt_rat.xrange = xlim plt_rat.yrange = [1 - 1.0e-2, 1 + 1.0e-2] rat_plots = [] for j in xrange(numcheck): npts = nptsvals[j] w = where1(scinv1000 > 0) ratio = scinv_all[j, w] / scinv1000[w] # ratio=scinv_all[j,:]/scinv1000[:] p = Curve(scalc[j].zlvals[w], ratio, type="solid", color=colors[j]) p.label = "npts: %d" % npts plt_rat.add(p) rat_plots.append(p) key = PlotKey(0.95, 0.9, rat_plots, halign="right") plt_rat.add(key) plt_rat.ylabel = r"$\langle \Sigma_{crit}^{-1} \rangle / \langle \Sigma_{crit}^{-1} \rangle_{1000}$" plt_rat.xlabel = r"$z_{lens}$" tab[2, 0] = plt_rat if show: tab.show() plotfile = self.npts_plot_file(i, type) print("writing to file:", plotfile) if type == "png": tab.write_img(1000, 1000, plotfile) else: tab.write_eps(plotfile) print("time npts=1000:", time1000) for j in xrange(numcheck): npts = nptsvals[j] print("time npts=%s: %s" % (npts, times[j]))
def test_scinv_dz(self, beg, end, yrange=[0, 2.1e-4], show=False, reload=False, type="png"): """ Test accuracy of interpolating scinv as a function of dzl, the lens redshift spacing. """ import biggles from biggles import Points, FramedPlot, PlotKey, Table, Histogram, Curve from time import time import lensing import pcolors biggles.configure("default", "fontface", "HersheySans") biggles.configure("default", "fontsize_min", 1.3) zsmin = self.zs[0] zsmax = self.zs[-1] zlmin = 0.00 zlmax = 1.0 # dzl_vals = numpy.linspace(0.001,0.015,10) dzl_vals = numpy.linspace(0.001, 0.015, 4) nzl_vals = ((zlmax - zlmin) / dzl_vals).astype("i8") numcheck = len(dzl_vals) colors = pcolors.rainbow(numcheck, "hex") scalc = [] for nzl in nzl_vals: s = ScinvCalculator(zlmin, zlmax, nzl, zsmin, zsmax, npts=100) scalc.append(s) times = numpy.zeros(numcheck, dtype="f8") # we'll fill this in # scinv_all = numpy.zeros( (numcheck, scalc[0].zlvals.size) ) xlim = [0, zsmax] for i in xrange(beg, end): scinv_all = [] pz = self.data["pofz"][i] # print(pz) for j in xrange(numcheck): dzl = dzl_vals[j] nzl = nzl_vals[j] print(" nzl: %s dzl: %g" % (nzl, dzl)) tm0 = time() # scinv_all[j,:] = scalc[j].calc_mean_scinv(pz) sc = scalc[j].calc_mean_scinv(self.zs, pz) # sc=sc.clip(min=0.0) # print("sc",j,sc) scinv_all.append(sc) times[j] += time() - tm0 print("\nplotting") # plot the p(z) tab = Table(3, 1) binsize = self.zs[1] - self.zs[0] pzh = Histogram(pz, x0=self.zs[0], binsize=binsize) plt_pzh = FramedPlot() plt_pzh.xrange = xlim plt_pzh.xtitle = r"$z_s$" plt_pzh.ytitle = r"$P(z_s)$" plt_pzh.add(pzh) tab[0, 0] = plt_pzh # plt_pzh.show() # plot scinv for each dzl plt_scinv = FramedPlot() plt_scinv.xrange = xlim scinv_plots = [] for j in xrange(numcheck): dzl = dzl_vals[j] nzl = nzl_vals[j] p = Curve(scalc[j].zlvals, scinv_all[j], type="solid", color=colors[j]) p.label = r"$nz_{lens}: %s dz_{lens}: %0.3f$" % (nzl, dzl) plt_scinv.add(p) scinv_plots.append(p) scinv_key = PlotKey(0.95, 0.9, scinv_plots, halign="right") plt_scinv.add(scinv_key) plt_scinv.ylabel = r"$\Sigma_{crit}^{-1}(z_{lens})$" plt_scinv.xlabel = r"$z_{lens}$" plt_scinv.yrange = yrange # plt_scinv.show() tab[1, 0] = plt_scinv # %diff to best dz plt_pdiff = FramedPlot() plt_pdiff.xrange = xlim plt_pdiff.yrange = [-0.05, 0.05] pdiff_plots = [] zl_interp = numpy.linspace(zlmin, zlmax, 1000) scinv_interp_best = esutil.stat.interplin(scinv_all[0], scalc[0].zlvals, zl_interp) w = where1(scinv_interp_best > 0) for j in xrange(numcheck): dzl = dzl_vals[j] nzl = nzl_vals[j] scinv_interp = esutil.stat.interplin(scinv_all[j], scalc[j].zlvals, zl_interp) if w.size > 0: pdiff = scinv_interp[w] / scinv_interp_best[w] - 1.0 p = Curve(zl_interp[w], pdiff, type="solid", color=colors[j]) else: pdiff = numpy.ones(scinv_interp.size) p = Curve(zl_interp, pdiff, type="solid", color=colors[j]) p.label = r"$nz_{lens}: %s dz_{lens}: %0.3f$" % (nzl, dzl) plt_pdiff.add(p) pdiff_plots.append(p) key = PlotKey(0.95, 0.9, pdiff_plots, halign="right") plt_pdiff.add(key) plt_pdiff.ylabel = r"$\Sigma_{crit}^{-1} / \Sigma_{crit}^{-1}_{best} - 1$" plt_pdiff.xlabel = r"$z_{lens}$" tab[2, 0] = plt_pdiff if show: tab.show() plotfile = self.dzl_plot_file(i, type) print("writing to file:", plotfile) if type == "png": tab.write_img(1000, 1000, plotfile) else: tab.write_eps(plotfile) for j in xrange(numcheck): dzl = dzl_vals[j] print("time dzl=%s: %s" % (dzl, times[j]))
def plot_coverage(self, region='both', show=True, dops=True): """ Plot a random subset of the randoms along with the boss survey geometry area as bounding boxes """ import biggles from biggles import FramedPlot, Points, PlotKey symsize=0.5 l = self.read() llam,leta = eu.coords.eq2sdss(l['ra'],l['dec']) lammin,lammax = (-70.,70.) if region=='ngc': # a bit high to make room for the legend emin,emax=(-40,60) biggles.configure('screen','width', 1800) biggles.configure('screen','height', 1140) width=1.5 elif region=='sgc': emin,emax=(125,165) biggles.configure('screen','width', 1800) biggles.configure('screen','height', 1140) width=2 else: emin,emax=(-40,165) biggles.configure('screen','width', 1140) biggles.configure('screen','height', 1140) width=2 wl=where1((leta > emin) & (leta < emax)) llam=llam[wl] leta=leta[wl] plt=FramedPlot() plt.xlabel=r'$\lambda$' plt.ylabel=r'$\eta$' xrng = (lammin, lammax) yrng = (emin, emax) plt.xrange = xrng plt.yrange = yrng print("adding random subset of randoms") ii = eu.numpy_util.random_subset(llam.size, 500000) allp = Points(llam[ii],leta[ii],type='dot',size=symsize) plt.add(allp) plt.aspect_ratio = (yrng[1]-yrng[0])/float(xrng[1]-xrng[0]) #es_sdsspy.stomp_maps.plot_boss_geometry(color='blue',plt=plt,show=False) es_sdsspy.stomp_maps.plot_boss_geometry(plt=plt,show=False,width=width) if show: plt.show() if dops: d = lensing.files.sample_dir(type='lcat',sample=self['sample']) d = os.path.join(d,'plots') if not os.path.exists(d): os.makedirs(d) epsfile = os.path.join(d, '%s-%s-coverage.eps' % ('lcat',self['sample'])) print("Writing to eps file:",epsfile) plt.write_eps(epsfile) return plt
def plot_nfw_lin_fits_byrun(run, name, npts=100, prompt=False, withlin=True, ymin=0.01, ymax=2000.0): """ This should be made not specific for the m-z splits we used on the sims """ conf = lensing.files.cascade_config(run) if withlin: ex='lin' nex='lin' else: nex='' ex='' d = lensing.sample_read(type='fit',sample=run, name=name, extra=ex) omega_m = conf['cosmo_config']['omega_m'] rravel = d['r'].ravel() xrange = [0.5*rravel.min(), 1.5*rravel.max()] #for i in xrange(d.size): i=0 for dd in d: zrange = dd['z_range'] mrange = dd['m200_range'] if dd['rrange'][0] > 0: log_rmin = log10(dd['rrange'][0]) log_rmax = log10(dd['rrange'][1]) else: log_rmin = log10(dd['r'][0]) log_rmax = log10(dd['r'][-1]) rvals = 10.0**linspace(log_rmin,log_rmax,npts) plt = FramedPlot() lensing.plotting.add_to_log_plot(plt, dd['r'],dd['dsig'],dd['dsigerr']) z = dd['z_mean'] fitter = lensing.fit.NFWBiasFitter(omega_m,z,rvals,withlin=withlin) if withlin: yfit = fitter.nfw_lin_dsig(rvals, dd['r200_fit'],dd['c_fit'],dd['B_fit']) yfit_nfw = fitter.nfw.dsig(rvals,dd['r200_fit'],dd['c_fit']) yfit_lin = fitter.lin_dsig(rvals,dd['B_fit']) yfit = where(yfit < 1.e-5, 1.e-5, yfit) yfit_lin = where(yfit_lin < 1.e-5, 1.e-5, yfit_lin) cyfit = Curve(rvals,yfit,color='blue') cyfit_nfw = Curve(rvals,yfit_nfw,color='red') cyfit_lin = Curve(rvals,yfit_lin,color='orange') cyfit.label = 'Best Fit' cyfit_nfw.label = 'NFW' cyfit_lin.label = 'linear' key=PlotKey(0.1,0.3,[cyfit,cyfit_nfw,cyfit_lin]) plt.add(cyfit,cyfit_nfw,cyfit_lin,key) else: yfit_nfw = fitter.nfw.dsig(rvals,dd['r200_fit'],dd['c_fit']) cyfit_nfw = Curve(rvals,yfit_nfw,color='blue') plt.add(cyfit_nfw) zlab='%0.2f < z < %0.2f' % (zrange[0],zrange[1]) plt.add(PlotLabel(0.7,0.8,zlab)) ll = (log10(mrange[0]),log10(mrange[1])) mlab = r'$%0.2f < logM_{200} < %0.2f$' % ll plt.add(PlotLabel(0.7,0.9,mlab)) #yrange = [ymin,(dd['dsig']+dd['dsigerr']).max()*1.5] yrange = [ymin,ymax] plt.xrange = xrange plt.yrange = yrange plt.xlog=True plt.ylog=True plt.xlabel = r'$r$ [$h^{-1}$ Mpc]' plt.ylabel = r'$\Delta\Sigma ~ [M_{sun} pc^{-2}]$' plt.aspect_ratio=1 if prompt: plt.show() rinput = raw_input('hit a key: ') if rinput == 'q': return else: d = lensing.files.lensbin_plot_dir(run,name) if not os.path.exists(d): os.makedirs(d) epsfile=path_join(d,'desmocks-nfw%s-fit-%02i.eps' % (nex,i)) print 'Writing epsfile:',epsfile plt.write_eps(epsfile) i += 1
def plot_coverage_bybin(self, binner, region='both', show=True, dops=True, rand=None): import pcolors import biggles import converter from biggles import FramedPlot, Points, PlotKey orig = self.read_original() lcat = self.read() all_clam,all_ceta = eu.coords.eq2sdss(orig['ra'],orig['dec']) l = orig[lcat['zindex']] clam,ceta = eu.coords.eq2sdss(lcat['ra'],lcat['dec']) clammin,clammax = (-70.,120.) if region=='ngc': # a bit high to make room for the legend emin,emax=(-40,60) biggles.configure('screen','width', 1800) biggles.configure('screen','height', 1140) clammin,clammax = (-70.,120.) elif region=='sgc': emin,emax=(105,165) biggles.configure('screen','width', 1800) biggles.configure('screen','height', 1140) clammin,clammax = (-50.,90.) else: emin,emax=(-40,165) biggles.configure('screen','width', 1140) biggles.configure('screen','height', 1140) clammin,clammax = (-70.,120.) wl=where1((all_ceta > emin) & (all_ceta < emax)) all_clam=all_clam[wl] all_ceta=all_ceta[wl] wl=where1((ceta > emin) & (ceta < emax)) clam=clam[wl] ceta=ceta[wl] l=l[wl] plt=FramedPlot() plt.xlabel=r'$\lambda$' plt.ylabel=r'$\eta$' xrng = (clammin, clammax) yrng = (emin, emax) plt.xrange = xrng plt.yrange = yrng print("adding all lenses") type = 'filled circle' symsize=0.2 colors = pcolors.rainbow(binner['nbin'],'hex') if rand is not None: clam_r,ceta_r = eu.coords.eq2sdss(rand['ra'],rand['dec']) wl=where1((ceta_r > emin) & (ceta_r < emax)) clam_r=clam_r[wl] ceta_r=ceta_r[wl] rp = Points(clam_r, ceta_r, type='dot', size=0.2) plt.add(rp) size_min=0.2 size_max=4 sizes=[] minlambda = l['lambda_zred'].min() maxlambda = l['lambda_zred'].max() for i in xrange(binner['nbin']): w=binner.select_bin(l, i) mlam=l['lambda_zred'][w].mean() # scale 0 to 1 sz=(mlam-minlambda)/maxlambda # now scale size sz = size_min + sz*(size_max-size_min) sizes.append(sz) all_plots=[] labels=[] #for i in xrange(binner['nbin']): for i in reversed(xrange(binner['nbin'])): w=binner.select_bin(l, i) #points = Points(clam[w], ceta[w],type=type,size=symsize, color=colors[i]) points = Points(clam[w], ceta[w],type=type,size=sizes[i], color=colors[i]) labels.append(binner.bin_label(i)) plt.add(points) labels.reverse() fakepoints = eu.plotting.fake_filled_circles(labels, colors) key=PlotKey(0.95,0.95,fakepoints,halign='right',size=1.5) plt.add(key) plt.aspect_ratio = (yrng[1]-yrng[0])/float(xrng[1]-xrng[0]) es_sdsspy.stomp_maps.plot_boss_geometry(color='blue',plt=plt,show=False) if show: plt.show() if dops: d = lensing.files.sample_dir(type='lcat',sample=self['sample']) d = os.path.join(d,'plots') if not os.path.exists(d): os.makedirs(d) epsfile = os.path.join(d, 'lcat-%s-coverage-bybin.eps' % self['sample']) if rand is not None: epsfile=epsfile.replace('.eps','-withrand.eps') if region in ['sgc','ngc']: epsfile=epsfile.replace('.eps','-%s.eps' % region) print("Writing to eps file:",epsfile) plt.write_eps(epsfile) print("converting to png") converter.convert(epsfile, dpi=300) return plt
def plot_ellip_vs_field(self, field, rmag_max=21.8, fmin=None, fmax=None, nbin=20, nperbin=50000, yrange=None, show=True): self.load_data() w=where1((self['cmodelmag_dered_r'] > 18.0) & (self['cmodelmag_dered_r'] < rmag_max) ) if w.size == 0: print("no good objects") return weights = 1.0/(0.32**2 + self['uncer_rg'][w]**2) if field == 'psf_fwhm': field_data = self['psf_fwhm'][w] fstr = 'PSF FWHM (arcsec)' elif field == 'psf_sigma': field_data = self['psf_sigma'][w] fstr = r'$\sigma_{PSF}$' elif field == 'R_rg': field_data = self['r_rg'][w] fstr = 'R_rg' else: field_data = self[field][w] fstr=field print("Plotting mean e for field:",field) fstr = fstr.replace('_','\_') be1 = eu.stat.Binner(field_data, self['e1_rg'][w], weights=weights) be2 = eu.stat.Binner(field_data, self['e2_rg'][w], weights=weights) print(" hist e1") be1.dohist(nperbin=nperbin, min=fmin, max=fmax) #be1.dohist(nbin=nbin, min=fmin, max=fmax) print(" stats e1") be1.calc_stats() print(" hist e2") be2.dohist(nperbin=nperbin, min=fmin, max=fmax) #be2.dohist(nbin=nbin, min=fmin, max=fmax) print(" stats e2") be2.calc_stats() plt = FramedPlot() p1 = Points( be1['wxmean'], be1['wymean'], type='filled circle', color='blue') p1err = SymErrY( be1['wxmean'], be1['wymean'], be1['wyerr2'], color='blue') p1.label = r'$e_1$' p2 = Points( be2['wxmean'], be2['wymean'], type='filled circle', color='red') p2.label = r'$e_2$' p2err = SymErrY( be2['wxmean'], be2['wymean'], be2['wyerr2'], color='red') key = PlotKey(0.8, 0.9, [p1,p2]) plt.add(p1, p1err, p2, p2err, key) if field != 'cmodelmag_dered_r': rmag_lab = PlotLabel(0.1,0.05,'rmag < %0.2f' % rmag_max, halign='left') plt.add(rmag_lab) plab = PlotLabel(0.1,0.1, 'CH+RM', halign='left') plt.add(plab) plt.xlabel = r'$'+fstr+'$' plt.ylabel = r'$<e>$' if yrange is not None: plt.yrange=yrange if show: plt.show() epsfile = self.plotfile(field, rmag_max) print(" Writing eps file:",epsfile) plt.write_eps(epsfile)
def main(): options,args = parser.parse_args(sys.argv[1:]) if len(args) < 3: parser.print_help() sys.exit(1) run1 = args[0] run2 = args[1] bintype = args[2] rrange=options.rrange if rrange is not None: rrange=[float(r) for r in rrange.split(',')] biggles.configure('screen','width', 1400) biggles.configure('default','fontsize_min',1.0) b = lensing.binning.instantiate_binner(bintype) name=b.get_name() data1 = lensing.files.sample_read(type=options.type, sample=run1, name=name) data2 = lensing.files.sample_read(type=options.type, sample=run2, name=name) nbin=data1.size tab=Table(1,2) for i in xrange(nbin): tab[0,0] = plot2dsig_over( data1['r'][i],data1['dsig'][i],data1['dsigerr'][i], data2['r'][i],data2['dsig'][i],data2['dsigerr'][i], label1=run1,label2=run2,label=b.bin_label(i), show=False) tab[0,0].aspect_ratio=1 pbot = FramedPlot() rat=data1['dsig'][i]/data2['dsig'][i] raterr = rat*numpy.sqrt( (data1['dsigerr'][i]/data1['dsig'][i])**2 +(data2['dsigerr'][i]/data2['dsig'][i])**2 ) rpts=Points(data1['r'][i], rat, type='filled circle',color='blue') rerr=SymErrY(data1['r'][i], rat, raterr,color='blue') if rrange is None: rat_use,raterr_use=rat,raterr else: w,=numpy.where( (data1['r'][i] > rrange[0]) & (data1['r'][i] < rrange[1])) rat_use,raterr_use=rat[w],raterr[w] mn,err = eu.stat.wmom(rat_use, 1/raterr_use**2, calcerr=True) plot_rrange=[0.5*data1['r'][i].min(),data1['r'][i].max()*2] z=Curve(plot_rrange, [1,1]) pbot.add(rpts,rerr,z) pbot.xlog=True pbot.xlabel = lensing.plotting.labels['rproj'] pbot.ylabel = '%s/%s' % (run1,run2) pbot.yrange=[0,2] pbot.xrange = plot_rrange pbot.aspect_ratio=1 lab='<ratio>' if rrange is not None: lab = r'$%s r \in [%.2f,%.2f]$' % (lab,rrange[0],rrange[1]) lab='%s: %0.2f +/- %0.2f' % (lab,mn,err) pbot.add(PlotLabel(0.9,0.9,lab,halign='right')) tab[0,1] = pbot tab.show() epsfile=lensing.files.sample_file(type='binned-plots', sample=run1, name=name, extra='compare-%s-%02d' % (run2,i), ext='eps') print("writing:",epsfile) tab.write_eps(epsfile) if nbin > 1: key=raw_input('hit a key: ') if key.lower() == 'q': return