コード例 #1
0
                 resource_id)

    reify_script = whizzml_script(args, api)

    # apply the reify script to the resource
    execute_command = [
        'execute', '--script', reify_script, '--output-dir', args.output_dir
    ]
    command_args, _, _, exe_session_file, _ = get_context( \
        execute_command, EXE_SETTINGS)
    command_args.arguments_ = [["res-id", resource_id]]
    command_args.inputs = json.dumps(command_args.arguments_)

    # process the command
    session_file = None
    execute_whizzml(command_args, api, session_file)
    with open("%s.json" % command_args.output) as file_handler:
        exe_output = json.load(file_handler)['result']

    if args.language == "nb":
        write_nb_output(resource_id, \
            exe_output, args.output.replace(".py", ".ipynb"), api)
        return
    elif args.language == "whizzml":
        output = exe_output["source_code"]
        args.output = args.output.replace(".py", ".whizzml")
        exe_output["source_code"] = args.output
        exe_output["kind"] = "script"
        with open(os.path.join(os.path.dirname(args.output), "metadata.json"),
                  "w") as meta_handler:
            meta_handler.write(json.dumps(exe_output))
コード例 #2
0
ファイル: reify.py プロジェクト: shantanusharma/bigmler
                 resource_id)

    reify_script = whizzml_script(args, api)

    # apply the reify script to the resource
    execute_command = ['execute',
                       '--script', reify_script,
                       '--output-dir', args.output_dir]
    command_args, _, _, exe_session_file, _ = get_context( \
        execute_command, EXE_SETTINGS)
    command_args.arguments_ = [["res-id", resource_id]]
    command_args.inputs = json.dumps(command_args.arguments_)

    # process the command
    session_file = None
    execute_whizzml(command_args, api, session_file)
    with open("%s.json" % command_args.output) as file_handler:
        exe_output = json.load(file_handler)['result']

    if args.language == "nb":
        write_nb_output(resource_id, \
            exe_output, args.output.replace(".py", ".ipynb"), api)
        return
    elif args.language == "whizzml":
        output = exe_output["source_code"]
        args.output = args.output.replace(".py", ".whizzml")
        exe_output["source_code"] = args.output
        exe_output["kind"] = "script"
        with open(os.path.join(os.path.dirname(args.output),
                               "metadata.json"), "w") as meta_handler:
            meta_handler.write(json.dumps(exe_output))
コード例 #3
0
ファイル: retrain.py プロジェクト: mmerce/bigmler
def retrain_model(args, api, common_options, session_file=None):
    """Retrieve or create the retrain script for a model and
    execute it with the new provided data

    """

    # retrieve the modeling resource to be retrained by tag or id
    if args.resource_id:
        resource_id = args.resource_id
        reference_tag = "retrain:%s" % resource_id
    else:
        for model_type in MODEL_TYPES:
            if hasattr(args, "%s_tag" % model_type) and \
                    getattr(args, "%s_tag" % model_type) is not None:
                tag = getattr(args, "%s_tag" % model_type)
                query_string = "tags=%s" % tag
                resource_id = get_last_resource( \
                    model_type.replace("_", ""),
                    api=api,
                    query_string=query_string)
                if resource_id is None:
                    sys.exit("Failed to find the %s with tag %s. "
                             "Please, check the tag and"
                             " the connection info (domain and credentials)." %
                             (model_type.replace("_", " "), tag))
                reference_tag = tag
                break
    if args.upgrade:
        shutil.rmtree(BIGMLER_SCRIPTS_DIRECTORY)
        script_id = None
    else:
        # check for the last script used to retrain the model
        query_string = "tags=retrain:%s" % resource_id
        script_id = get_last_resource( \
            "script",
            api=api,
            query_string=query_string)

    if script_id is None:
        # if the script to retrain does not exist:

        # check whether the model exists
        try:
            bigml.api.check_resource(resource_id, raise_on_error=True, api=api)
        except Exception, exc:
            sys.exit("Failed to find the model %s. Please, check its ID and"
                     " the connection info (domain and credentials)." %
                     resource_id)

        # look for the script that creates the rebuild script.
        retrain_file = os.path.join(BIGMLER_SCRIPTS_DIRECTORY,
                                    "retrain",
                                    "scripts")
        reify_script = get_script_id(retrain_file)

        if reify_script is None:
            # new bigmler command: creating the scriptify scripts
            whizzml_command = ['whizzml',
                               '--package-dir', INCREMENTAL_PACKAGE_PATH,
                               '--output-dir', BIGMLER_SCRIPTS_DIRECTORY]
            whizzml_dispatcher(args=whizzml_command)
            reify_script = get_script_id(retrain_file)

        # new bigmler command: creating the retrain script
        execute_command = ['execute',
                           '--script', reify_script,
                           '--output-dir', args.output_dir]
        command_args, _, _, exe_session_file, _ = get_context(execute_command,
                                                              EXE_SETTINGS)
        command_args.arguments_ = [["model-resource", resource_id]]
        command_args.inputs = json.dumps(command_args.arguments_)
        # process the command
        execute_whizzml(command_args, api, session_file)
        script_id = extract_retrain_id(command_args, api, session_file)
コード例 #4
0
ファイル: retrain.py プロジェクト: RuiSUN1124/bigmler
def retrain_model(args, api, common_options, session_file=None):
    """Retrieve or create the retrain script for a model and
    execute it with the new provided data

    """

    # retrieve the modeling resource to be retrained by tag or id
    if args.resource_id:
        resource_id = args.resource_id
        reference_tag = "retrain:%s" % resource_id
    else:
        for model_type in MODEL_TYPES:
            if hasattr(args, "%s_tag" % model_type) and \
                    getattr(args, "%s_tag" % model_type) is not None:
                tag = getattr(args, "%s_tag" % model_type)
                query_string = "tags=%s" % tag
                resource_id = get_last_resource( \
                    model_type.replace("_", ""),
                    api=api,
                    query_string=query_string)
                if resource_id is None:
                    sys.exit("Failed to find the %s with tag %s. "
                             "Please, check the tag and"
                             " the connection info (domain and credentials)." %
                             (model_type.replace("_", " "), tag))
                reference_tag = tag
                break
    if args.upgrade:
        shutil.rmtree(BIGMLER_SCRIPTS_DIRECTORY)
        script_id = None
    else:
        # check for the last script used to retrain the model
        query_string = "tags=retrain:%s" % resource_id
        script_id = get_last_resource( \
            "script",
            api=api,
            query_string=query_string)

    if script_id is None:
        # if the script to retrain does not exist:

        # check whether the model exists
        try:
            bigml.api.check_resource(resource_id, raise_on_error=True, api=api)
        except Exception, exc:
            sys.exit("Failed to find the model %s. Please, check its ID and"
                     " the connection info (domain and credentials)." %
                     resource_id)

        # look for the script that creates the rebuild script.
        retrain_file = os.path.join(BIGMLER_SCRIPTS_DIRECTORY, "retrain",
                                    "scripts")
        reify_script = get_script_id(retrain_file)

        if reify_script is None:
            # new bigmler command: creating the scriptify scripts
            whizzml_command = [
                'whizzml', '--package-dir', INCREMENTAL_PACKAGE_PATH,
                '--output-dir', BIGMLER_SCRIPTS_DIRECTORY
            ]
            whizzml_dispatcher(args=whizzml_command)
            reify_script = get_script_id(retrain_file)

        # new bigmler command: creating the retrain script
        execute_command = [
            'execute', '--script', reify_script, '--output-dir',
            args.output_dir
        ]
        command_args, _, _, exe_session_file, _ = get_context(
            execute_command, EXE_SETTINGS)
        command_args.arguments_ = [["model-resource", resource_id]]
        command_args.inputs = json.dumps(command_args.arguments_)
        # process the command
        execute_whizzml(command_args, api, session_file)
        script_id = extract_retrain_id(command_args, api, session_file)
コード例 #5
0
ファイル: retrain.py プロジェクト: felmarlop/bigmler
def retrain_model(args, api, command, session_file=None):
    """Retrieve or create the retrain script for a model and
    execute it with the new provided data

    """

    retrain_file = os.path.join(BIGMLER_SCRIPTS_DIRECTORY, "retrain",
                                "scripts")
    try:
        os.remove(UPGRADE_FILE)
        reify_script = None
        try:
            shutil.rmtree(BIGMLER_SCRIPTS_DIRECTORY)
        except OSError:
            pass
    except OSError:
        # look for the script that creates the rebuild script.
        reify_script = get_script_id(retrain_file)

    if reify_script is None:
        # new bigmler command: creating the scriptify scripts
        whizzml_command = [
            'whizzml', '--package-dir', INCREMENTAL_PACKAGE_PATH,
            '--output-dir', BIGMLER_SCRIPTS_DIRECTORY
        ]
        add_api_context(whizzml_command, args)
        whizzml_dispatcher(args=whizzml_command)
        reify_script = get_script_id(retrain_file)

    # retrieve the modeling resource to be retrained by tag or id
    if args.resource_id:
        resource_id = args.resource_id
        reference_tag = "retrain:%s" % resource_id
    else:
        for model_type in MODEL_TYPES:
            if hasattr(args, "%s_tag" % model_type) and \
                    getattr(args, "%s_tag" % model_type) is not None:
                tag = getattr(args, "%s_tag" % model_type)
                query_string = "tags=%s" % tag
                resource_id = get_first_resource( \
                    model_type.replace("_", ""),
                    api=api,
                    query_string=query_string)
                if resource_id is None:
                    sys.exit("Failed to find the %s with tag %s. "
                             "Please, check the tag and"
                             " the connection info (domain and credentials)." %
                             (model_type.replace("_", " "), tag))
                reference_tag = tag
                break
    # updating the dataset that generated the model with the reference tag
    model = api.getters[get_resource_type(resource_id)](resource_id)
    dataset_id = model["object"]["dataset"]
    dataset = api.get_dataset(dataset_id)
    tags = dataset["object"]["tags"]
    if reference_tag not in tags:
        tags.append(reference_tag)
        api.update_dataset(dataset_id, {"tags": tags})

    # if --upgrade, we force rebuilding the scriptified script
    if args.upgrade:
        script_id = None
    else:
        # check for the last script used to retrain the model
        query_string = "tags=%s" % reference_tag
        script_id = get_last_resource( \
            "script",
            api=api,
            query_string=query_string)

    if script_id is None:
        # if the script to retrain does not exist:

        # check whether the model exists
        try:
            bigml.api.check_resource(resource_id, raise_on_error=True, api=api)
        except Exception:
            sys.exit("Failed to find the model %s. Please, check its ID and"
                     " the connection info (domain and credentials)." %
                     resource_id)

        # new bigmler command: creating the retrain script
        execute_command = [
            'execute', '--script', reify_script, '--tag', reference_tag,
            '--output-dir', args.output_dir
        ]
        command.propagate(execute_command)
        command_args, _, _, exe_session_file, _ = get_context(
            execute_command, EXE_SETTINGS)
        command_args.arguments_ = [["model-resource", resource_id]]
        command_args.inputs = json.dumps(command_args.arguments_)

        # process the command
        execute_whizzml(command_args, api, session_file)
        script_id = extract_retrain_id(command_args, api, session_file)

    # apply the retrain script to the new data:
    # add new data: depending on the script we will need to use
    # a source-url, a source or a dataset
    if args.add:
        script_inputs = api.get_script(script_id)['object']['inputs']
        input_type = script_inputs[0]['type']
        command_args, api, exe_session_file = \
            create_input(args, api, input_type, script_id, command)

        # process the command
        execute_whizzml(command_args, api, exe_session_file)

        with open("%s.json" % command_args.output) as file_handler:
            model_resource_id = json.load(file_handler)['result']
            message = (u'The new retrained model is: %s.\n'
                       u'You can use the\n\n%s\n\nquery to retrieve the latest'
                       u' retrained model.\n\n') % \
                (model_resource_id, last_resource_url( \
                resource_id, api, \
                "limit=1;full=yes;tags=%s" % reference_tag))
            log_message(message, log_file=session_file, console=1)
コード例 #6
0
def reify_resources(args, api):
    """ Extracts the properties of the created resources and generates
        code to rebuild them

    """

    resource_id = get_resource_id(args.resource_id)
    if resource_id is None:
        sys.exit("Failed to match a valid resource ID. Please, check: %s" %
                 args.resource_id)

    # check whether the resource exists
    try:
        check_resource(resource_id, raise_on_error=True, api=api)
    except Exception:
        sys.exit("Failed to find the resource %s. Please, check its ID and"
                 " the connection info (domain and credentials)." %
                 resource_id)

    reify_script = whizzml_script(args, api)

    # apply the reify script to the resource
    execute_command = [
        'execute', '--script', reify_script, '--output-dir', args.output_dir
    ]
    command_args, _, _, _, _ = get_context( \
        execute_command, EXE_SETTINGS)
    command_args.arguments_ = [["res-id", resource_id]]
    command_args.inputs = json.dumps(command_args.arguments_)

    # process the command
    session_file = None
    execute_whizzml(command_args, api, session_file)
    with open("%s.json" % command_args.output) as file_handler:
        exe_output = json.load(file_handler)['result']

    if args.language == "nb":
        write_nb_output(resource_id, \
            exe_output, args.output.replace(".py", ".ipynb"), api)
        return
    elif args.language == "whizzml":
        output = exe_output["source_code"]
        args.output = args.output.replace(".py", ".whizzml")
        exe_output["source_code"] = args.output
        exe_output["kind"] = "script"
        with open(os.path.join(os.path.dirname(args.output), "metadata.json"),
                  "w") as meta_handler:
            meta_handler.write(json.dumps(exe_output))
    else:
        output = python_output(exe_output, api)
        prefix = u"""\
#!/usr/bin/env python
# -​*- coding: utf-8 -*​-
\"\"\"Python code to reify %s

Generated by BigMLer
\"\"\"


def main():

""" % resource_id
        suffix = u"""\
if __name__ == "__main__":
    main()
"""
        output = "%s%s\n%s" % (prefix, output, suffix)

    write_to_utf8(args.output, output)

    sts = os.stat(args.output)
    os.chmod(args.output, sts.st_mode | stat.S_IEXEC)