def local_prediction(models, test_reader, output, args, exclude=None): """Get local model and issue prediction """ # Only one model at present local_model = SupervisedModel(models[0], api=args.retrieve_api_) kwargs = {"full": True} if has_value(args.operating_point_): kwargs.update({"operating_point": args.operating_point_}) for input_data in test_reader: input_data_dict = test_reader.dict(input_data, filtering=False) prediction_info = local_model.predict(input_data_dict, **kwargs) write_prediction(prediction_info, output, args.prediction_info, input_data, exclude)
def fusion_dispatcher(args=sys.argv[1:]): """Parses command line and calls the different processing functions """ # If --clear-logs the log files are cleared if "--clear-logs" in args: clear_log_files(LOG_FILES) settings = {} settings.update(SETTINGS) if '--evaluate' in args: settings.update({"default_output": "evaluation"}) command_args, _, api, session_file, _ = get_context(args, settings) # Selects the action to perform if a.has_value(command_args, "fusion_models_") or a.has_test(command_args): compute_output(api, command_args) u.log_message("_" * 80 + "\n", log_file=session_file)
def fusion_dispatcher(args=sys.argv[1:]): """Parses command line and calls the different processing functions """ # If --clear-logs the log files are cleared if "--clear-logs" in args: clear_log_files(LOG_FILES) settings = {} settings.update(SETTINGS) if '--evaluate' in args: settings.update({"default_output": "evaluation"}) command_args, command, api, session_file, resume = get_context(args, settings) # Selects the action to perform if a.has_value(command_args, "fusion_models_") or a.has_test(command_args): compute_output(api, command_args) u.log_message("_" * 80 + "\n", log_file=session_file)
def local_prediction(models, test_reader, output, args, exclude=None): """Get local model and issue prediction """ # Only one model at present try: bigml.api.get_fusion_id(models[0]) local_model = Fusion(models[0], api=args.retrieve_api_) except ValueError: local_model = SupervisedModel(models[0], api=args.retrieve_api_) kwargs = {"full": True} if has_value(args, "operating_point_"): kwargs.update({"operating_point": args.operating_point_}) for input_data in test_reader: input_data_dict = test_reader.dict(input_data, filtering=False) prediction_info = local_model.predict( input_data_dict, **kwargs) write_prediction(prediction_info, output, args.prediction_info, input_data, exclude)